高效液相色谱串联质谱法测定鱼体内双酚A及其替代品

杨丽萍, 王强, 祝凌燕. 高效液相色谱串联质谱法测定鱼体内双酚A及其替代品[J]. 环境化学, 2018, 37(8): 1842-1850. doi: 10.7524/j.issn.0254-6108.2018031602
引用本文: 杨丽萍, 王强, 祝凌燕. 高效液相色谱串联质谱法测定鱼体内双酚A及其替代品[J]. 环境化学, 2018, 37(8): 1842-1850. doi: 10.7524/j.issn.0254-6108.2018031602
YANG Liping, WANG Qiang, ZHU Lingyan. Simultaneous determination of Bisphenol A and its alternatives in fish samples by ultra performance liquid chromatography electrospray tandem mass spectrometry[J]. Environmental Chemistry, 2018, 37(8): 1842-1850. doi: 10.7524/j.issn.0254-6108.2018031602
Citation: YANG Liping, WANG Qiang, ZHU Lingyan. Simultaneous determination of Bisphenol A and its alternatives in fish samples by ultra performance liquid chromatography electrospray tandem mass spectrometry[J]. Environmental Chemistry, 2018, 37(8): 1842-1850. doi: 10.7524/j.issn.0254-6108.2018031602

高效液相色谱串联质谱法测定鱼体内双酚A及其替代品

  • 基金项目:

    国家自然科学基金(21577067,21737003)和教育部111创新引智基地计划(T2017002)资助.

Simultaneous determination of Bisphenol A and its alternatives in fish samples by ultra performance liquid chromatography electrospray tandem mass spectrometry

  • Fund Project: Supported by the National Natural Science Foundation of China (21577067, 21737003) and Ministry of Education 111 Innovative Intelligence Base Plan of China(T2017002).
  • 摘要: 为实现生物体中双酚A及其替代物的准确、快速、高灵敏度的同时测定,采用固相萃取与超高效液相色谱和三重四极杆质谱联用(SPE-UPLC-MS/MS)技术,建立了测定鱼体内双酚A及其8种替代物(双酚B(BPB)、双酚C(BPC)、双酚E(BPE)、双酚F(BPF)、双酚S(BPS)、双酚Z(BPZ)、双酚AF(BPAF)和双酚AP(BPAP))的前处理和分析方法.结果显示,以V(甲醇):V(水)=1:1的混合液为萃取剂提取鱼体中的双酚类目标物,经过HC-C18 SPE(500 mg)柱净化富集后,采用Waters BEH Shield RP18(2.1×150 mm,1.7 μm,Waters)色谱柱分离目标物,9种目标双酚类化合物的线性范围0.500-100 ng·g-1(r > 0.995),检出限可达0.100-380 pg·g-1湿重,回收率范围为68.0%-125%,相对标准偏差范围为1.4%-5.7%.通过分析锦鲤全鱼样品,证明该方法样品回收率高、检出限低、灵敏度高、重现性好,具有较好的实用性.
  • 加载中
  • [1] ANDERSON O S, KIM J H, PETERSON K E, et al. Novel epigenetic biomarkers mediating bisphenol a exposure and metabolic phenotypes in female mice[J]. Endocrinology, 2017, 158(1):31-40.
    [2] BRAUN J M. Early-life exposure to EDCs:role in childhood obesity and neurodevelopment[J]. Nature Reviews Endocrinology, 2016, 13:161-173.
    [3] LI X, GUO J-Y, LI X, et al. Behavioural effect of low-dose BPA on male zebrafish:Tuning of male mating competition and female mating preference during courtship process[J]. Chemosphere, 2016, 169:40-52.
    [4] GANG X, SIHAN M, LIANG T, et al. Occurrence, fate, and risk assessment of selected endocrine disrupting chemicals in wastewater treatment plants and receiving river of Shanghai, China[J]. Environmental Science and Pollution Research, 2016, 23(24):25442-25450.
    [5] WU X, LI Y, ZHU X, et al. Dummy molecularly imprinted magnetic nanoparticles for dispersive solid-phase extraction and determination of bisphenol A in water samples and orange juice[J]. Talanta, 2017, 162:57-64.
    [6] ANDRIANOU X D, GANGLER S, PICIU A, et al. Human exposures to bisphenol a, bisphenol f and chlorinated bisphenol a derivatives and thyroid function[J]. Plos One, 2016, 11(10):e0155237.
    [7] GALLO P, PISCIOTTANO I D M, ESPOSITO F, et al. Determination of BPA, BPB, BPF, BADGE and BFDGE in canned energy drinks by molecularly imprinted polymer cleaning up and UPLC with fluorescence detection[J]. Food Chemistry, 2017, 220:406-412.
    [8] CESEN M, LAMBROPOULOU D, LAIMOU-GERANIOU M, et al. Determination of bisphenols and related compounds in honey and their migration from selected food contact materials[J]. Journal of Agricultural and Food Chemistry, 2016, 64(46):8866-8875.
    [9] ERIKO Y, NOBUYOSHI Y, SACHI T, et al. Bisphenol A and other bisphenol analogues including BPS and BPF in surface water samples from Japan, China, Korea and India[J]. Ecotoxicology And Environmental Safety, 2015, 122:565-572.
    [10] YANG J, WANG X, ZHANG D, et al. Simultaneous determination of endocrine disrupting compounds bisphenol F and bisphenol AF using carboxyl functionalized multi-walled carbon nanotubes modified electrode[J]. Talanta, 2014, 130:207-212.
    [11] JIN H and ZHU L. Occurrence and partitioning of bisphenol analogues in water and sediment from Liaohe River Basin and Taihu Lake, China[J]. Water Research, 2016, 103:343-351.
    [12] WANG Q, CHEN M, SHAN G, et al. Bioaccumulation and biomagnification of emerging bisphenol analogues in aquatic organisms from Taihu Lake, China[J]. The Science of the total environment, 2017, 598:814-820.
    [13] KITAMURA S, SUZUKI T, SANOH S, et al. Comparative study of the endocrine-disrupting activity of bisphenol A and 19 related compounds[J]. Toxicological Sciences, 2005, 84(2):249-259.
    [14] JI K, HONG S, KHO Y, et al. Effects of Bisphenol S Exposure on Endocrine Functions and Reproduction of Zebrafish[J]. Environmental Science & Technology, 2013, 47(15):8793-8800.
    [15] YANG Y, LU L, ZHANG J, et al. Simultaneous determination of seven bisphenols in environmental water and solid samples by liquid chromatography-electrospray tandem mass spectrometry[J]. Journal Of Chromatography A, 2014, 1328:26-34.
    [16] LIAO C, LIU F, MOON H-B, et al. Bisphenol Analogues in Sediments from Industrialized Areas in the United States, Japan, and Korea:Spatial and Temporal Distributions[J]. Environmental Science & Technology, 2012, 46(21):11558-11565.
  • 加载中
计量
  • 文章访问数:  1539
  • HTML全文浏览数:  1503
  • PDF下载数:  267
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-03-16
  • 刊出日期:  2018-08-15
杨丽萍, 王强, 祝凌燕. 高效液相色谱串联质谱法测定鱼体内双酚A及其替代品[J]. 环境化学, 2018, 37(8): 1842-1850. doi: 10.7524/j.issn.0254-6108.2018031602
引用本文: 杨丽萍, 王强, 祝凌燕. 高效液相色谱串联质谱法测定鱼体内双酚A及其替代品[J]. 环境化学, 2018, 37(8): 1842-1850. doi: 10.7524/j.issn.0254-6108.2018031602
YANG Liping, WANG Qiang, ZHU Lingyan. Simultaneous determination of Bisphenol A and its alternatives in fish samples by ultra performance liquid chromatography electrospray tandem mass spectrometry[J]. Environmental Chemistry, 2018, 37(8): 1842-1850. doi: 10.7524/j.issn.0254-6108.2018031602
Citation: YANG Liping, WANG Qiang, ZHU Lingyan. Simultaneous determination of Bisphenol A and its alternatives in fish samples by ultra performance liquid chromatography electrospray tandem mass spectrometry[J]. Environmental Chemistry, 2018, 37(8): 1842-1850. doi: 10.7524/j.issn.0254-6108.2018031602

高效液相色谱串联质谱法测定鱼体内双酚A及其替代品

  • 1. 环境污染过程与基准教育部重点实验室, 天津市城市生态环境修复与防治重点实验室, 南开大学环境科学与工程学院, 天津, 300350
基金项目:

国家自然科学基金(21577067,21737003)和教育部111创新引智基地计划(T2017002)资助.

摘要: 为实现生物体中双酚A及其替代物的准确、快速、高灵敏度的同时测定,采用固相萃取与超高效液相色谱和三重四极杆质谱联用(SPE-UPLC-MS/MS)技术,建立了测定鱼体内双酚A及其8种替代物(双酚B(BPB)、双酚C(BPC)、双酚E(BPE)、双酚F(BPF)、双酚S(BPS)、双酚Z(BPZ)、双酚AF(BPAF)和双酚AP(BPAP))的前处理和分析方法.结果显示,以V(甲醇):V(水)=1:1的混合液为萃取剂提取鱼体中的双酚类目标物,经过HC-C18 SPE(500 mg)柱净化富集后,采用Waters BEH Shield RP18(2.1×150 mm,1.7 μm,Waters)色谱柱分离目标物,9种目标双酚类化合物的线性范围0.500-100 ng·g-1(r > 0.995),检出限可达0.100-380 pg·g-1湿重,回收率范围为68.0%-125%,相对标准偏差范围为1.4%-5.7%.通过分析锦鲤全鱼样品,证明该方法样品回收率高、检出限低、灵敏度高、重现性好,具有较好的实用性.

English Abstract

参考文献 (16)

返回顶部

目录

/

返回文章
返回