贵阳市大气臭氧生成过程与敏感性初步分析

伏志强, 郭佳, 王章玮, 黄海梅, 张晓山. 贵阳市大气臭氧生成过程与敏感性初步分析[J]. 环境化学, 2019, 38(1): 161-168. doi: 10.7524/j.issn.0254-6108.2018021301
引用本文: 伏志强, 郭佳, 王章玮, 黄海梅, 张晓山. 贵阳市大气臭氧生成过程与敏感性初步分析[J]. 环境化学, 2019, 38(1): 161-168. doi: 10.7524/j.issn.0254-6108.2018021301
FU Zhiqiang, GUO Jia, WANG Zhangwei, HUANG Haimei, ZHANG Xiaoshan. Analysis of atmospheric ozone formation process and the sensitivity to precursors in Guiyang[J]. Environmental Chemistry, 2019, 38(1): 161-168. doi: 10.7524/j.issn.0254-6108.2018021301
Citation: FU Zhiqiang, GUO Jia, WANG Zhangwei, HUANG Haimei, ZHANG Xiaoshan. Analysis of atmospheric ozone formation process and the sensitivity to precursors in Guiyang[J]. Environmental Chemistry, 2019, 38(1): 161-168. doi: 10.7524/j.issn.0254-6108.2018021301

贵阳市大气臭氧生成过程与敏感性初步分析

  • 基金项目:

    国家重点研发计划项目(2016YFC0203200)和国家自然科学基金青年项目(41605093)资助.

Analysis of atmospheric ozone formation process and the sensitivity to precursors in Guiyang

  • Fund Project: Supported by the National Key Research and Development Program of China (2016YFC0203200) and National Natural Science Fundation of China (41605093).
  • 摘要: 为研究贵阳市大气臭氧的光化学生成特征,于2016年选取大气臭氧浓度较高的时段,在城区和郊区环境空气质量监测点对贵阳非甲烷烃类的环境浓度进行了观测.并利用基于观测的光化学模型分析了贵阳近地面大气臭氧生成的典型光化学过程和敏感性.通过在臭氧浓度较高时段,对比分析城区和郊区臭氧和臭氧前体物、模拟的主要自由基和光化学链反应终止产物的变化特征,发现贵阳城区与郊区的臭氧生成特征不同.通过分析臭氧主要前体物的相对增量反应活性,进一步发现城区臭氧生成主要受VOCs控制,郊区主要受NOx控制.控制人为源的烯烃和芳香烃对于控制城区臭氧污染最为有效.
  • 加载中
  • [1] 唐孝炎张远航, 邵敏大气环境化学[M]. 第二版.北京:高等教育出版社, 2006. TANG XY, ZHANG YH, SHAO M. Atomospheric Environmental Chemistry[M].Second edition. Beijing:Higher Education Press.2006(in Chinese).
    [2] JOHN H. SEINFELD S N P. Atmospheric chemistry and physics:From air pollution to climate change[M]. A Wiley-Interscience Publication, 2006.
    [3] WILKINSON S, MILLS G, ILLIDGE R, et al. How is ozone pollution reducing our food supply?[J]. J Exp Bot, 2012, 63(2):527-536.
    [4] ZAK D R, HOLMES W E, PREGITZER K S. Atmospheric CO2 and O3 alter the flow of 15N in developing forest ecosystems[J]. Ecology, 2007, 88(10):2630-2639.
    [5] USEPA Ozone Pollution[EB/OL].[2017-07-01]. https://www.epa.gov/ozone-pollution.
    [6] WANG T, XUE L, BRIMBLECOMBE P, et al. Ozone pollution in China:A review of concentrations, meteorological influences, chemical precursors, and effects[J]. Science of the Total Environment, 2017, 5751582-1596.
    [7] SILLMAN S. The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments[J]. Atmos Environ, 1999, 33(12):1821-1845.
    [8] WEI W, LV Z, CHENG S, et al. Characterizing ozone pollution in a petrochemical industrial area in Beijing, China:A case study using a chemical reaction model[J]. Environmental Monitoring and Assessment, 2015, 187(6):377-387.
    [9] WANG T, NIE W, GAO J, et al. Air quality during the 2008 Beijing Olympics:Secondary pollutants and regional impact[J]. Atmos Chem Phys, 2010, 10(16):7603-7615.
    [10] SHAO M, LU S, LIU Y, et al. Volatile organic compounds measured in summer in Beijing and their role in ground-level ozone formation[J]. J Geophys Res-Atmos, 2009, 114, D00G06-19.
    [11] AN J, ZOU J, WANG J, et al. Differences in ozone photochemical characteristics between the megacity Nanjing and its suburban surroundings, Yangtze River Delta, China[J]. Environ Sci Pollut R, 2015, 22(24):19607-19617.
    [12] XUE L K, WANG T, GAO J, et al. Ground-level ozone in four Chinese cities:Precursors, regional transport and heterogeneous processes[J]. Atmos Chem Phys, 2014, 14(23):13175-13188.
    [13] SHI C, WANG S, LIU R, et al. A study of aerosol optical properties during ozone pollution episodes in 2013 over Shanghai, China[J]. Atmospheric Research, 2015, 153235-249.
    [14] SHAO M, ZHANG Y, ZENG L, et al. Ground-level ozone in the Pearl River Delta and the roles of VOC and NOx in its production[J]. Journal of Environmental Management, 2009, 90(1):512-518.
    [15] JIA C, MAO X, HUANG T, et al. Non-methane hydrocarbons (NMHCs) and their contribution to ozone formation potential in a petrochemical industrialized city, Northwest China[J]. Atmospheric Research, 2016, 169:225-236.
    [16] LYU X P, CHEN N, GUO H, et al. Ambient volatile organic compounds and their effect on ozone production in Wuhan, central China[J]. Science of the Total Environment, 2016, 541(Supplement C):200-209.
    [17] FENG Z, HU E, WANG X, et al. Ground-level O3 pollution and its impacts on food crops in China:A review[J]. Environmental Pollution, 2015, 199:42-48.
    [18] 刘芮伶, 翟崇治, 李礼,等. 重庆主城区夏秋季挥发性有机物(VOCs)浓度特征及来源研究[J]. 环境科学学报, 2017,37(4):1260-1267.

    LIU R L, ZHAI C Z, LI L, et al. Concentration characteristics and source analysis of ambient VOCs in summer and autumn in the urban area of Chongqing[J]. Acta Scientiae Circumstantiae.017, 37(4).1260-1267(in Chinese).

    [19] 吴锴, 康平, 王占山,等. 成都市臭氧污染特征及气象成因研究[J]. 环境科学学报, 2017, 37(11):4241-4252.

    WU K, KANG P, WANG Z S, et al. Ozone temporal variation and its meteorological factors over Chengdu City[J]. Acta Scientiae Circumstantiae. 2017, 37(11):4241-4252(in Chinese).

    [20] 张青, 宫正宇, 孟晓艳,等. 成渝地区臭氧污染特征分析[J]. 环境科学与技术, 2017, 40(S1):9-11.

    ZHANG Q, GONG Z Y, MENG X Y, et al. Analysis of ozone pollution in Chengdu-Chongqing Region[J]. Environmental Science & Technology, 2017, 40(S1):9-11(in Chinese).

    [21] RUSSELL A, DENNIS R. NARSTO critical review of photochemical models and modeling[J]. Atmos Environ, 2000, 34(12):2283-2324.
    [22] SAUNDERS S M, JENKIN M E, DERWENT R G, et al. Protocol for the development of the Master Chemical Mechanism, MCM v3(Part A):Tropospheric degradation of non-aromatic volatile organic compounds[J]. Atmos Chem Phys, 2003, 3(1):161-180.
    [23] JENKIN M E, SAUNDERS S M, WAGNER V, et al. Protocol for the development of the Master Chemical Mechanism, MCM v3(Part B):Tropospheric degradation of aromatic volatile organic compounds[J]. Atmos Chem Phys, 2003, 3(1):181-193.
    [24] KANAYA Y, POCHANART P, LIU Y, et al. Rates and regimes of photochemical ozone production over Central East China in June 2006:A box model analysis using comprehensive measurements of ozone precursors[J]. Atmos Chem Phys, 2009, 9(20):7711-7723.
    [25] XUE L K, WANG T, GUO H, et al. Sources and photochemistry of volatile organic compounds in the remote atmosphere of western China:Results from the Mt. Waliguan Observatory[J]. Atmos Chem Phys, 2013, 13(17):8551-8567.
    [26] CARDELINO C A, CHAMEIDES W L. An observation-based model for analyzing ozone precursor relationships in the urban atmosphere[J]. Journal of the Air & Waste Management Association, 1995, 45(3):161-180.
    [27] GUO H, LING Z H, CHENG H R, et al. Tropospheric volatile organic compounds in China[J]. Science of the Total Environment, 2017, 574(Supplement C):1021-1043.
    [28] CHAMEIDES W L, FEHSENFELD F, RODGERS M O, et al. Ozone precursor relationships in the ambient atmosphere[J]. Journal of Geophysical Research:Atmospheres, 1992, 97(D5):6037-6055.
    [29] ATKINSON R, AREY J. Atmospheric degradation of volatile organic compounds[J]. Chemical Reviews, 2003, 103(12):4605-4638.
    [30] 陆克定, 张远航, 苏杭, 等. 珠江三角洲夏季臭氧区域污染及其控制因素分析[J]. 中国科学:化学, 2010, 40(4):407-420.

    LU K D, ZHANG Y H, SU H, et al Regional ozone pollution and key controlling factors of. photochemical ozone production in Pearl River delta during summer time[J].Scientia Sinica Chimica, 2010, 40(4):407-420(in Chinese).

    [31] CHENG H, GUO H, WANG X, et al. On the relationship between ozone and its precursors in the Pearl River Delta:Application of an observation-based model (OBM)[J]. Environ Sci Pollut R, 2010, 17(3):547-560.
  • 加载中
计量
  • 文章访问数:  2092
  • HTML全文浏览数:  2047
  • PDF下载数:  125
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-02-13
  • 刊出日期:  2019-01-15
伏志强, 郭佳, 王章玮, 黄海梅, 张晓山. 贵阳市大气臭氧生成过程与敏感性初步分析[J]. 环境化学, 2019, 38(1): 161-168. doi: 10.7524/j.issn.0254-6108.2018021301
引用本文: 伏志强, 郭佳, 王章玮, 黄海梅, 张晓山. 贵阳市大气臭氧生成过程与敏感性初步分析[J]. 环境化学, 2019, 38(1): 161-168. doi: 10.7524/j.issn.0254-6108.2018021301
FU Zhiqiang, GUO Jia, WANG Zhangwei, HUANG Haimei, ZHANG Xiaoshan. Analysis of atmospheric ozone formation process and the sensitivity to precursors in Guiyang[J]. Environmental Chemistry, 2019, 38(1): 161-168. doi: 10.7524/j.issn.0254-6108.2018021301
Citation: FU Zhiqiang, GUO Jia, WANG Zhangwei, HUANG Haimei, ZHANG Xiaoshan. Analysis of atmospheric ozone formation process and the sensitivity to precursors in Guiyang[J]. Environmental Chemistry, 2019, 38(1): 161-168. doi: 10.7524/j.issn.0254-6108.2018021301

贵阳市大气臭氧生成过程与敏感性初步分析

  • 1.  中国科学院生态环境研究中心, 北京, 100085;
  • 2.  中国科学院大学, 北京, 100049
基金项目:

国家重点研发计划项目(2016YFC0203200)和国家自然科学基金青年项目(41605093)资助.

摘要: 为研究贵阳市大气臭氧的光化学生成特征,于2016年选取大气臭氧浓度较高的时段,在城区和郊区环境空气质量监测点对贵阳非甲烷烃类的环境浓度进行了观测.并利用基于观测的光化学模型分析了贵阳近地面大气臭氧生成的典型光化学过程和敏感性.通过在臭氧浓度较高时段,对比分析城区和郊区臭氧和臭氧前体物、模拟的主要自由基和光化学链反应终止产物的变化特征,发现贵阳城区与郊区的臭氧生成特征不同.通过分析臭氧主要前体物的相对增量反应活性,进一步发现城区臭氧生成主要受VOCs控制,郊区主要受NOx控制.控制人为源的烯烃和芳香烃对于控制城区臭氧污染最为有效.

English Abstract

参考文献 (31)

返回顶部

目录

/

返回文章
返回