整流电絮凝技术对缺氧地下水中As(Ⅲ)的原位修复

信帅帅, 孙彤, 江波. 整流电絮凝技术对缺氧地下水中As(Ⅲ)的原位修复[J]. 环境化学, 2019, 38(1): 195-201. doi: 10.7524/j.issn.0254-6108.2018020401
引用本文: 信帅帅, 孙彤, 江波. 整流电絮凝技术对缺氧地下水中As(Ⅲ)的原位修复[J]. 环境化学, 2019, 38(1): 195-201. doi: 10.7524/j.issn.0254-6108.2018020401
XIN Shuaishuai, SUN Tong, JIANG Bo. Rectified-alternating-current electrocoagulation for As(Ⅲ) remediation in the anoxic groundwater[J]. Environmental Chemistry, 2019, 38(1): 195-201. doi: 10.7524/j.issn.0254-6108.2018020401
Citation: XIN Shuaishuai, SUN Tong, JIANG Bo. Rectified-alternating-current electrocoagulation for As(Ⅲ) remediation in the anoxic groundwater[J]. Environmental Chemistry, 2019, 38(1): 195-201. doi: 10.7524/j.issn.0254-6108.2018020401

整流电絮凝技术对缺氧地下水中As(Ⅲ)的原位修复

  • 基金项目:

    国家自然科学基金(51608284)资助.

Rectified-alternating-current electrocoagulation for As(Ⅲ) remediation in the anoxic groundwater

  • Fund Project: Supported by the National Natural Science Foundation of China (51608284).
  • 摘要: 地下水中砷污染的原位修复治理对人类社会的可持续发展具有重要意义.本文研发了一种新型整流电絮凝反应体系,可实现对缺氧地下水As(Ⅲ)的原位修复.实验结果表明,最优操作条件为:电流密度为4.4 mA·cm-2,铁棒和MMO的阳极工作时间比值(TFe-anode/TMMO-anode)为1:2,反应周期为24 s.在最优条件下,含有500 μg·L-1 As(Ⅲ)的模拟地下水经过30 min电絮凝处理后砷的固定脱除效率达92%,总能耗为0.11 kW·hm-3.此外,水体中的HCO3-和PO43-等无机阴离子对砷的固定具有抑制作用.在该反应体系内,电解生成的Fe(Ⅱ)与O2之间的氧化反应生成具有强氧化性的Fe(Ⅳ)可有效将As(Ⅲ)氧化成毒性较小且更易于固定脱除的As(Ⅴ),进而显著促进了砷在Fe(Ⅲ)絮凝沉淀作用下的固定脱除.
  • 加载中
  • [1] NIDHEESH P V, TSA S. Arsenic removal by electrocoagulation process:Recent trends and removal mechanism[J]. Chemosphere, 2017, 181:418-432.
    [2] RODRIGUEZLADO L, SUN G, BERG M, et al. Groundwater arsenic contamination throughout China[J]. Science, 2013, 341(6148):866-868.
    [3] LI L, VAN GENUCHTEN C M, ADDY S E, et al. Modeling As(Ⅲ) oxidation and removal with iron electrocoagulation in groundwater[J]. Environmental Science & Technology, 2012, 46(21):12038-12045.
    [4] KOMADEL P. Quantitative assay of minerals for Fe2+ and Fe3+ using 1,10-phenanthroline:Ⅲ. A rapid photochemical method[J]. Clays & Clay Minerals, 1988, 36(4):379-381.
    [5] WAN W, PEPPING T J, BANERJI T, et al. Effects of water chemistry on arsenic removal from drinking water by electrocoagulation[J]. Water Research, 2011, 45(1):384-392.
    [6] TONG M, YUAN S, ZHANG P, et al. Electrochemically induced oxidative precipitation of Fe(Ⅱ) for As(Ⅲ) oxidation and removal in synthetic groundwater[J]. Environmental Science & Technology, 2014, 48(9):5145-5153.
    [7] LAKSHMANAN D, CLIFFORD D A, SAMANTA G, et al. Comparative study of arsenic removal by iron using electrocoagulation and chemical coagulation[J]. Water Research, 2010, 44(19):5641-5652.
    [8] HUG S J, LEUPIN O. Iron-catalyzed oxidation of arsenic(Ⅲ) by oxygen and by hydrogen peroxide:pH-dependent formation of oxidants in the Fenton reaction[J]. Environmental Science & Technology, 2003, 37(12):2734-2742.
    [9] MAN T, YUAN S, WANG Z, et al. Electrochemically induced oxidative removal of As(Ⅲ) from groundwater in a dual-anode sand column[J]. Journal of Hazardous Materials, 2016, 305:41-50.
    [10] DELAIRE C, AMROSE S, ZHANG M, et al. How do operating conditions affect As(Ⅲ) removal by iron electrocoagulation?[J]. Water Research, 2017, 112:185-194.
    [11] KING D W, FARLOW R. Role of carbonate speciation on the oxidation of Fe(Ⅱ) by H2O2[J]. Marine Chemistry, 2000, 70(1-3):201-209.
    [12] PANG S Y, JIANG J, MA J. Oxidation of sulfoxides and arsenic(Ⅲ) in corrosion of nanoscale zero valent iron by oxygen:Evidence against ferryl ions (Fe(Ⅳ)) as active intermediates in Fenton reaction[J]. Environmental Science & Technology, 2011, 45(1):307-312.
    [13] BISSEN M, FRIMMEL F H. Arsenic-a review. Part Ⅱ:Oxidation of arsenic and its removal in water treatment[J]. Clean-Soil, Air, Water, 2010, 31(2):97-107.
    [14] ZHAO X, ZHANG B, LIU H, et al. Removal of arsenite by simultaneous electro-oxidation and electro-coagulation process[J]. Journal of Hazardous Materials, 2010, 184(1-3):472-476.
    [15] 刘辉利, 梁美娜, 朱义年, 等. 氢氧化铁对砷的吸附与沉淀机理[J]. 环境科学学报, 2009, 129(5):1011-1020.

    LIU H L, LIANG M N, ZHU Y N, et al. The adsorption of arsenic by ferric hydroxide and its precipitation mechanism[J]. Acta Scientiae Circumstantiae, 2009, 129(5):1011-1020(in Chinese).

    [16] JIA Y, XU L, FANG Z, et al. Observation of surface precipitation of arsenate on ferrihydrite[J]. Environmental Science & Technology, 2006, 40(10):3248-3253.
  • 加载中
计量
  • 文章访问数:  1387
  • HTML全文浏览数:  1370
  • PDF下载数:  102
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-02-04
  • 刊出日期:  2019-01-15
信帅帅, 孙彤, 江波. 整流电絮凝技术对缺氧地下水中As(Ⅲ)的原位修复[J]. 环境化学, 2019, 38(1): 195-201. doi: 10.7524/j.issn.0254-6108.2018020401
引用本文: 信帅帅, 孙彤, 江波. 整流电絮凝技术对缺氧地下水中As(Ⅲ)的原位修复[J]. 环境化学, 2019, 38(1): 195-201. doi: 10.7524/j.issn.0254-6108.2018020401
XIN Shuaishuai, SUN Tong, JIANG Bo. Rectified-alternating-current electrocoagulation for As(Ⅲ) remediation in the anoxic groundwater[J]. Environmental Chemistry, 2019, 38(1): 195-201. doi: 10.7524/j.issn.0254-6108.2018020401
Citation: XIN Shuaishuai, SUN Tong, JIANG Bo. Rectified-alternating-current electrocoagulation for As(Ⅲ) remediation in the anoxic groundwater[J]. Environmental Chemistry, 2019, 38(1): 195-201. doi: 10.7524/j.issn.0254-6108.2018020401

整流电絮凝技术对缺氧地下水中As(Ⅲ)的原位修复

  • 1.  石油石化污染物控制与处理国家重点实验室, 北京, 102206;
  • 2.  青岛理工大学, 环境与市政工程学院, 青岛, 266033
基金项目:

国家自然科学基金(51608284)资助.

摘要: 地下水中砷污染的原位修复治理对人类社会的可持续发展具有重要意义.本文研发了一种新型整流电絮凝反应体系,可实现对缺氧地下水As(Ⅲ)的原位修复.实验结果表明,最优操作条件为:电流密度为4.4 mA·cm-2,铁棒和MMO的阳极工作时间比值(TFe-anode/TMMO-anode)为1:2,反应周期为24 s.在最优条件下,含有500 μg·L-1 As(Ⅲ)的模拟地下水经过30 min电絮凝处理后砷的固定脱除效率达92%,总能耗为0.11 kW·hm-3.此外,水体中的HCO3-和PO43-等无机阴离子对砷的固定具有抑制作用.在该反应体系内,电解生成的Fe(Ⅱ)与O2之间的氧化反应生成具有强氧化性的Fe(Ⅳ)可有效将As(Ⅲ)氧化成毒性较小且更易于固定脱除的As(Ⅴ),进而显著促进了砷在Fe(Ⅲ)絮凝沉淀作用下的固定脱除.

English Abstract

参考文献 (16)

返回顶部

目录

/

返回文章
返回