氧氟沙星和诺氟沙星在磷酸改性生物炭上的等温吸附行为

储刚, 赵婧, 刘洋, 吴敏, 周丹丹, 李燕燕. 氧氟沙星和诺氟沙星在磷酸改性生物炭上的等温吸附行为[J]. 环境化学, 2018, 37(3): 462-470. doi: 10.7524/j.issn.0254-6108.2017090403
引用本文: 储刚, 赵婧, 刘洋, 吴敏, 周丹丹, 李燕燕. 氧氟沙星和诺氟沙星在磷酸改性生物炭上的等温吸附行为[J]. 环境化学, 2018, 37(3): 462-470. doi: 10.7524/j.issn.0254-6108.2017090403
CHU Gang, ZHAO Jing, LIU Yang, WU Min, ZHOU Dandan, LI Yanyan. Sorption of ofloxacin and norfloxacin on modified biochars using phosphoric acid treatment[J]. Environmental Chemistry, 2018, 37(3): 462-470. doi: 10.7524/j.issn.0254-6108.2017090403
Citation: CHU Gang, ZHAO Jing, LIU Yang, WU Min, ZHOU Dandan, LI Yanyan. Sorption of ofloxacin and norfloxacin on modified biochars using phosphoric acid treatment[J]. Environmental Chemistry, 2018, 37(3): 462-470. doi: 10.7524/j.issn.0254-6108.2017090403

氧氟沙星和诺氟沙星在磷酸改性生物炭上的等温吸附行为

  • 基金项目:

    国家自然科学基金(41473116)和昆明理工大学校级人才培养项目(KKZ3201422028)资助.

Sorption of ofloxacin and norfloxacin on modified biochars using phosphoric acid treatment

  • Fund Project: Supported by the National Natural Science Foundation of China (41473116) and Talents Training Program of Kunming University of Science and Technology(KKZ3201422028).
  • 摘要: 本研究考察了不同制备温度下(200℃、350℃、500℃、650℃),磷酸改性前后生物炭的理化性质,及其对氧氟沙星(OFL)和诺氟沙星(NOR)的等温吸附行为.采用N2物理吸附、扫描电镜、热重及元素分析等表征,对离子型抗生素在磷酸改性的生物炭上的等温吸附行为进行了研究.结果表明,随着制备温度的增加,改性生物炭的总孔体积不断增大,孔隙结构广泛形成,比表面积急剧增加.磷酸改性有助于提高生物炭的产率以及保留生物炭的极性官能团.OFL和NOR在改性生物炭上的吸附显著高于原始生物炭,且350℃下制备的改性生物炭具有最大吸附量,其吸附机制归因于吸附剂的大比表面积和孔隙填充作用.由于孔隙的利用率降低和炭的疏水性增强,OFL和NOR在更高温度改性生物炭上的吸附量逐渐降低.因此,在处理以上两种污染物时,350℃可作为磷酸改性生物炭的最佳裂解温度,且有利于减少能耗,节约资源.
  • 加载中
  • [1] BROWN K D, KULIS J, THOMSON B, et al. Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico[J]. Science of the Total Environment, 2006, 366(2/3):772-783.
    [2] LUO Y, XU L, RYSZ M, et al. Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River Basin, China[J]. Environmental Science & Technology, 2016, 45(5):1827-1833.
    [3] XU W, ZHANG G, LI X, et al. Occurrence and elimination of antibiotics at four sewage treatment plants in the Pearl River Delta (PRD), South China[J]. Water Research, 2007, 41(19):4526-4534.
    [4] GULLBERG E, SHA C, BERG O G, et al. Selection of resistant bacteria at very low antibiotic concentrations[J]. Plos Pathogens, 2011, 7(7):e1002158.
    [5] SEGURA P A, FRANCOIS M, GAGNON C, et al. Review of the occurrence of anti-infectives in contaminated wastewaters and natural and drinking waters[J]. Environmental Health Perspectives, 2009, 117(5):675-684.
    [6] 尉小旋,陈景文,王如冰,等. 氧氟沙星和诺氟沙星的水环境光化学转化:pH值及溶解性物质的影响[J]. 环境化学, 2015,34(3):448-454.

    WEI X X, CHEN J W, WANG R B, et al. Aquatic photochemical transformation of ofloxacin and norfloxacin:Effects of pH and water constituents[J]. Environmental Chemistry, 2015,34(3):448-454(in Chinese).

    [7] YIRUHAN, WANG Q J, MO C H, et al. Determination of four fluoroquinolone antibiotics in tap water in Guangzhou and Macao[J]. Environmental Pollution, 2010, 158(7):2350-2358.
    [8] CHU G, ZHAO J, CHEN F Y, et al. Physi-chemical and sorption properties of biochars prepared from peanut shell using thermal pyrolysis and microwave irradiation[J]. Environmental Pollution, 2017, 227:372-379.
    [9] XIAO X, CHEN B L. A direct observation of the fine aromatic clusters and molecular structures of biochars[J]. Environmental Science & Technology, 2017, 51:5473-5482.
    [10] BEESLEY L, MORENO-JIMENEZ E, GOMEZ-EYLES J L, et al. A review of biochars' potential role in the remediation, revegetation and restoration of contaminated soils[J]. Environmental Pollution, 2011, 159(12):3269-3282.
    [11] AZARGOHAR R, DALAI A K. Steam and KOH activation of biochar:Experimental and modeling studies[J]. Microporous & Mesoporous Materials, 2008, 110(2-3):413-421.
    [12] TAHA S M, AMER M E, ELMARSAFY A E, et al. Adsorption of 15 different pesticides on untreated and phosphoric acid treated biochar and charcoal from water[J]. Journal of Environmental Chemical Engineering, 2014, 2(4):2013-2025.
    [13] JAGTOYEN M, DERBYSHIRE F. Activated carbons from yellow poplar and white oak by H3PO4, activation[J]. Carbon, 1998, 36(7-8):1085-1097.
    [14] GUO Y, ROCKSTRAW D A. Physical and chemical properties of carbons synthesized from xylan, cellulose, and Kraft lignin by H3PO4, activation[J]. Carbon, 2006, 44(8):1464-1475.
    [15] ZHAO L, CAO X, ZHENG W, et al. Phosphorus-assisted biomass thermal conversion:Reducing carbon loss and improving biochar stability[J]. Plos One, 2014, 9(12):e115373.
    [16] PENG H B, PAN B, WU M, et al. Adsorption of ofloxacin and norfloxacin on carbon nanotubes:Hydrophobicity- and structure-controlled process[J]. Journal of Hazardous Materials, 2012, 233-234(3):89-96.
    [17] SIGMUND G, HUFFER T, HOFMANN T, et al. Biochar total surface area and total pore volume determined by N2 and CO2 physisorption are strongly influenced by degassing temperature[J]. Science of the Total Environment, 2016, 580:770-775.
    [18] CHEN Z M, CHEN B L, CHIOU C T. Fast and slow rates of naphthalene sorption to biochars produced at different temperatures[J]. Environmental Science & Technology, 2012, 46(20):11104-11111.
    [19] HAN L F, RO K S, SUN K, et al. New evidence for high sorption capacity of hydrochar for hydrophobic organic pollutants[J]. Environmental Science & Technology, 2016, 50(24):13274-13282.
    [20] XIAO X, CHEN B L, ZHU L. Transformation, morphology, and dissolution of silicon and carbon in rice straw-derived biochars under different pyrolytic temperatures[J]. Environmental Science & Technology, 2014, 48(6):3411-3419.
    [21] QIU C, HE Y, BROOKES P, et al. The systematic characterization of nanoscale bamboo charcoal and its sorption on phenanthrene:A comparison with microscale[J]. Science of the Total Environment, 2016, 578:399-407.
    [22] PENG H B, PAN B, WU M, et al. Adsorption of ofloxacin on carbon nanotubes:solubility, pH and cosolvent effects[J]. Journal of Hazardous Materials, 2012, 211:342-348.
    [23] ZHANG G, ZHANG Q, SUN K, et al. Sorption of simazine to corn straw biochars prepared at different pyrolytic temperatures[J]. Environmental Pollution, 2011, 159(10):2594-2601.
    [24] ZHAO L, ZHENG W, MASEK O, et al. Roles of phosphoric acid in biochar formation:Synchronously improving carbon retention and sorption capacity[J]. Journal of Environmental Quality, 2017, 46(2):393-401.
    [25] PENG H B, LI H, WANG C, et al. Sorption and solubility of ofloxacin and norfloxacin in water-methanol cosolvent[J]. Chemosphere, 2014, 103(5):322-328.
    [26] PAN B, XING B S. Adsorption mechanisms of organic chemicals on carbon nanotubes[J]. Environmental Science & Technology, 2009, 42(24):9005-9013.
  • 加载中
计量
  • 文章访问数:  1956
  • HTML全文浏览数:  1904
  • PDF下载数:  668
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-09-04
  • 刊出日期:  2018-03-15
储刚, 赵婧, 刘洋, 吴敏, 周丹丹, 李燕燕. 氧氟沙星和诺氟沙星在磷酸改性生物炭上的等温吸附行为[J]. 环境化学, 2018, 37(3): 462-470. doi: 10.7524/j.issn.0254-6108.2017090403
引用本文: 储刚, 赵婧, 刘洋, 吴敏, 周丹丹, 李燕燕. 氧氟沙星和诺氟沙星在磷酸改性生物炭上的等温吸附行为[J]. 环境化学, 2018, 37(3): 462-470. doi: 10.7524/j.issn.0254-6108.2017090403
CHU Gang, ZHAO Jing, LIU Yang, WU Min, ZHOU Dandan, LI Yanyan. Sorption of ofloxacin and norfloxacin on modified biochars using phosphoric acid treatment[J]. Environmental Chemistry, 2018, 37(3): 462-470. doi: 10.7524/j.issn.0254-6108.2017090403
Citation: CHU Gang, ZHAO Jing, LIU Yang, WU Min, ZHOU Dandan, LI Yanyan. Sorption of ofloxacin and norfloxacin on modified biochars using phosphoric acid treatment[J]. Environmental Chemistry, 2018, 37(3): 462-470. doi: 10.7524/j.issn.0254-6108.2017090403

氧氟沙星和诺氟沙星在磷酸改性生物炭上的等温吸附行为

  • 1. 昆明理工大学环境科学与工程学院, 昆明, 650500
基金项目:

国家自然科学基金(41473116)和昆明理工大学校级人才培养项目(KKZ3201422028)资助.

摘要: 本研究考察了不同制备温度下(200℃、350℃、500℃、650℃),磷酸改性前后生物炭的理化性质,及其对氧氟沙星(OFL)和诺氟沙星(NOR)的等温吸附行为.采用N2物理吸附、扫描电镜、热重及元素分析等表征,对离子型抗生素在磷酸改性的生物炭上的等温吸附行为进行了研究.结果表明,随着制备温度的增加,改性生物炭的总孔体积不断增大,孔隙结构广泛形成,比表面积急剧增加.磷酸改性有助于提高生物炭的产率以及保留生物炭的极性官能团.OFL和NOR在改性生物炭上的吸附显著高于原始生物炭,且350℃下制备的改性生物炭具有最大吸附量,其吸附机制归因于吸附剂的大比表面积和孔隙填充作用.由于孔隙的利用率降低和炭的疏水性增强,OFL和NOR在更高温度改性生物炭上的吸附量逐渐降低.因此,在处理以上两种污染物时,350℃可作为磷酸改性生物炭的最佳裂解温度,且有利于减少能耗,节约资源.

English Abstract

参考文献 (26)

返回顶部

目录

/

返回文章
返回