水体被动采样技术的发展与应用

雷沛, 单保庆, 张洪. 水体被动采样技术的发展与应用[J]. 环境化学, 2018, 37(3): 480-496. doi: 10.7524/j.issn.0254-6108.2017073103
引用本文: 雷沛, 单保庆, 张洪. 水体被动采样技术的发展与应用[J]. 环境化学, 2018, 37(3): 480-496. doi: 10.7524/j.issn.0254-6108.2017073103
LEI Pei, SHAN Baoqing, ZHANG Hong. Development and applications of passive sampling techniques in aquatic environment: A review[J]. Environmental Chemistry, 2018, 37(3): 480-496. doi: 10.7524/j.issn.0254-6108.2017073103
Citation: LEI Pei, SHAN Baoqing, ZHANG Hong. Development and applications of passive sampling techniques in aquatic environment: A review[J]. Environmental Chemistry, 2018, 37(3): 480-496. doi: 10.7524/j.issn.0254-6108.2017073103

水体被动采样技术的发展与应用

  • 基金项目:

    中国博士后科学基金(2017M622782)和国家自然科学基金(21547009)资助

Development and applications of passive sampling techniques in aquatic environment: A review

  • Fund Project: Supported by the China Postdoctoral Science Foundation(2017M622782)and the National Natural Science Foundation of China (21547009).
  • 摘要: 被动采样技术不需要任何外力,具有操作简单、安全可靠等特点,在环境领域表现出良好的应用前景.本文回顾了水体被动采样技术的发展历程,简要介绍了被动采样技术定量方法,介绍并讨论了典型无机、有机水体被动采样装置特点、应用和发展趋势.其中,沉积物-水界面有机污染物被动采样以及水体无机/有机污染物被动采样是近些年被动采样技术的重要发展方向.最后,对水体被动采样技术在构型设计、应用范围、理论推进、与生物分析结合以及方法标准化方面的发展前景进行了展望.
  • 加载中
  • [1] 国家自然科学基金委员会化学科学部编. 环境化学学科前沿与展望[M]. 北京:科学出版社, 2011. Department of Chmistry, National Natural Science Foundation of China. Frontiers and prospects of environmental chemistry[M]. Beijing:Science Press, 2011(in Chinese).
    [2] 李慧珍, 游静. 被动采样技术在测定沉积物中有机污染物的生物可利用性和毒性中的研究进展[J]. 色谱, 2013, 31(7):620-625.

    LI H Z, YOU J. Advances in using passive sampling techniques to measure bioavailability and toxicity of organic contaminants in sediment[J]. Chinese Journal of Chromatography, 2013, 31(7):620-625(in Chinese).

    [3] NAMIEŚNIK J, ZABIEGAŁA B, KOT-WASIK A, et al. Passive sampling and/or extraction techniques in nnvironmental analysis:A review[J]. Analytical and Bioanalytical Chemistry, 2005, 381(2):279-301.
    [4] ZABIEGAŁA B, KOT-WASIK A, URBANOWICZ M, et al. Passive sampling as a tool for obtaining reliable analytical information in environmental quality monitoring[J]. Analytical and Bioanalytical Chemistry, 2010, 396(1):273-296.
    [5] ESCHER B I, HERMENS J L. Internal exposure:linking bioavailability to effects[J]. Environmental Science & Technology, 2004, 38(23):455A-462A.
    [6] HAITZER M, HÖSS S, TRAUNSPURGER W, et al. Effects of dissolved organic matter (DOM) on the bioconcentration of organic chemicals in aquatic organisms:A review[J]. Chemosphere, 1998, 37(7):1335-1362.
    [7] BOOIJ K, ROBINSON C D, BURGESS R M, et al. Passive sampling in regulatory chemical monitoring of nonpolar organic compounds in the aquatic environment[J]. Environmental Science & Technology, 2015, 50(1):125-132.
    [8] GREENWOOD R, MILLS G A, VRANA B. Passive sampling techniques in environmental monitoring[M]. Vol. 48 of Wilson & Wilson's Comprehensive Analytical Chemistry (ed. by Barcelo D), Amsterdam, Netherlands:Elsevier, 2007.
    [9] HARNER T, BARTKOW M, HOLOUBEK I, et al. Passive air sampling for persistent organic pollutants:Introductory remarks to the special issue[J]. Environmental Pollution, 2006, 144(2):361-364.
    [10] MAYER P, TOLLS J, HERMENS J L, et al. Equilibrium sampling devices[J]. Environmental Science & Technology, 2003, 37(9):184A-191A.
    [11] STUER-LAURIDSEN F. Review of passive accumulation devices for monitoring organic micropollutants in the aquatic environment[J]. Environmental Pollution, 2005, 136(3):503-524.
    [12] FARRAR N J, PREVEDOUROS K, HARNER T, et al. Continental scale passive air sampling of persistent organic pollutants using rapidly equilibrating thin films (POGs)[J]. Environmental Pollution, 2006, 144(2):423-433.
    [13] HARNER T, POZO K, GOUIN T, et al. Global pilot study for persistent organic pollutants (POPs) using PUF disk passive air samplers[J]. Environmental Pollution, 2006, 144(2):445-452.
    [14] SHEN L, WANIA F, LEI Y D, et al. Polychlorinated biphenyls and polybrominated diphenyl ethers in the North American atmosphere[J]. Environmental Pollution, 2006, 144(2):434-444.
    [15] KOTZIAS D, GEISS O, TIRENDI S, et al. Exposure to multiple air contaminants in public buildings, schools and kindergartens-The European Indoor Air Monitoring and Exposure Assessment (AIRMEX) study[J]. Fresenius Environmental Bulletin, 2009, 18(5A):670-681.
    [16] CHEN J, PAWLISZYN J B. Solid phase microextraction coupled to high-performance liquid chromatography[J]. Analytical Chemistry, 1995, 67(15):2530-2533.
    [17] PETERSON S M, APTE S C, BATLEY G E, et al. Passive sampler for chlorinated pesticides in estuarine waters[J]. Chemical Speciation and Bioavailability, 1995, 7(3):83-88.
    [18] BAO L J, ZENG E Y. Passive sampling techniques for sensing freely dissolved hydrophobic organic chemicals in sediment porewater[J]. Trends in Analytical Chemistry, 2011, 30(9):1422-1428.
    [19] COX R M. The use of passive sampling to monitor forest exposure to O3, NO2 and SO2:A review and some case studies[J]. Environmental Pollution, 2003, 126(3):301-311.
    [20] BENEŠ P, STEINNES E. In situ dialysis for the determination of the state of trace elements in natural waters[J]. Water Research, 1974, 8(11):947-953.
    [21] HESSLEIN R H. An in situ sampler for close interval pore water studies[J]. Limnology & Oceanography, 1976, 21(6):912-914.
    [22] MAYER L M. Chemical water sampling in lakes and sediments with dialysis bags[J]. Limnology & Oceanography, 1976, 21(6):909-912.
    [23] GESSER H D. Extraction of cadmium from natural waters by passive complexing agent loaded foam strips[J]. Journal of Environment Scicence Health, Part A; (United States), 1984, 19(1):83-91.
    [24] MORRISON G M P. Bioavailable metal uptake rate determination in polluted waters by dialysis with receiving resins[J]. Environmental Technology Letters, 1987, 8(1-12):393-402.
    [25] JÖNSSON J Å, MATHIASSON L. Supported liquid membrane techniques for sample preparation and enrichment in environmental and biological analysis[J]. Trends in Analytical Chemistry, 1992, 11(3):106-114.
    [26] DAVLSON W, ZHANG H. In situ speciation measurements of trace components in natural waters using thin-film gels[J]. Nature, 1994, 367(6463):546-548.
    [27] SOEDERGREN A. Solvent-filled dialysis membranes simulate uptake of pollutants by aquatic organisms[J]. Environmental Science & Technology, 1987, 21(9):855-859.
    [28] DIGIANO F A, ELLIOT D, LEITH D. Application of passive dosimetry to the detection of trace organic contaminants in water[J]. Environmental Science & Technology, 1988, 22(11):1365-1367.
    [29] BELARDI J, PAWLISZYN J. Application of chemically modified fused silica fibers in the extraction of organics from water matrix samples and their rapid transfer to capillary columns[J]. Water Pollution Research Journal Canada, 1989, 24:179-191.
    [30] HUCKINS J N, TUBERGEN M W, MANUWEERA G K. Semipermeable membrane devices containing model lipid:A new approach to monitoring the bioavaiiability of lipophilic contaminants and estimating their bioconcentration potential[J]. Chemosphere, 1990, 20(5):533-552.
    [31] ARTHUR C L, PAWLISZYN J. Solid phase microextraction with thermal desorption using fused silica optical fibers[J]. Analytical Chemistry, 1990, 62(19):2145-2148.
    [32] LITTEN S, MEAD B, HASSETT J. Application of passive samplers (pisces) to locating a source of PCBs on the Black River, New York[J]. Environmental Toxicology and Chemistry, 1993, 12(4):639-647.
    [33] ZHANG Z, PAWLISZYN J. Headspace solid-phase microextraction[J]. Analytical Chemistry, 1993, 65(14):1843-1852.
    [34] VROBLESKY D A, RHODES L C, ROBERTSON J F, et al. Locating VOC contamination in a fractured-rock aquifer at the ground-water/surface-water interface using passive vapor collectors[J]. Ground Water, 1996, 34(2):223-230.
    [35] GÖRECKI T, MINDRUP R, PAWLISZYN J. Pesticides by solid-phase microextraction. Results of a round robin test[J]. Analyst, 1996, 121(10):1381-1386.
    [36] MCCOMB M, GESSER H. Passive monitoring of trace metals in water by in situ sample preconcentration via chelation on a textile based solid sorbent[J]. Analytica Chimica Acta, 1997, 341(2):229-239.
    [37] GRATHWOHL P, SCHIEDEK T. Passive samplers as a long-term monitoring system for hydrophobic organic contaminants[M]. Field Screening Europe. Dordrecht, Netherlands, Springer,1997.
    [38] BOOIJ K, SLEIDERINK H M, SMEDES F. Calibrating the uptake kinetics of semipermeable membrane devices using exposure standards[J]. Environmental Toxicology and Chemistry, 1998, 17(7):1236-1245.
    [39] ALVAREZ D A, PETTY J D, HUCKINS J N, et al. Development of a passive, in situ, integrative sampler for hydrophilic organic contaminants in aquatic environments[J]. Environmental Toxicology and Chemistry, 2004, 23(7):1640-1648.
    [40] BALTUSSEN E, SANDRA P, DAVID F, et al. Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples:Theory and principles & dagger[J]. Journal of Microcolumn Separations, 1999, 11(10):737-747.
    [41] KINGSTON J K, GREENWOOD R, MILLS G A, et al. Development of a novel passive sampling system for the time-averaged measurement of a range of organic pollutants in aquatic environments[J]. Journal of Environmental Monitoring, 2000, 2(5):487-495.
    [42] VRANA B, POPP P, PASCHKE A, SCHVVRMANN G. Membrane-enclosed sorptive coating. An integrative passive sampler for monitoring organic contaminants in water[J]. Analytical Chemistry, 2001, 73(21):5191-5200.
    [43] LEWANDOWSKI J, KRISTINA RVTER A, HUPFER M. Two-dimensional small-scale variability of pore water phosphate in freshwater lakes:Results from a novel dialysis sampler[J]. Environmental Science & Technology, 2002, 36(9):2039-2047.
    [44] MARTIN H, PATTERSON B M, DAVIS G B. Field trial of contaminant groundwater monitoring:Comparing time-integrating ceramic dosimeters and conventional water sampling[J]. Environmental Science & Technology, 2003, 37(7):1360-1364.
    [45] LIU J F, JIANG G B, CHI Y G, et al. Use of ionic liquids for liquid-phase microextraction of polycyclic aromatic hydrocarbons[J]. Analytical Chemistry, 2003, 75(21):5870-5876.
    [46] BARTKOW M E, HAWKER D W, KENNEDY K E, et al. Characterizing uptake kinetics of PAHs from the air using polyethylene-based passive air samplers of multiple surface area-to-volume ratios[J]. Environmental Science & Technology, 2004, 38(9):2701-2706.
    [47] STEPHENS B S, KAPERNICK A, Geoff Eaglesham A, et al. Aquatic passive sampling of herbicides on naked particle loaded membranes:Accelerated measurement and empirical estimation of kinetic parameters[J]. Environmental Science & Technology, 2005, 39(22):8891-8897.
    [48] CLARISSE O, HINTELMANN H. Measurements of dissolved methylmercury in natural waters using diffusive gradients in thin film (DGT).[J]. Journal of Environmental Monitoring, 2006, 8(12):1242-1247.
    [49] YOU J, PEHKONEN S, LANDRUM P F, et al. Desorption of hydrophobic compounds from laboratory-spiked sediments measured by Tenax absorbent and matrix solid-phase microextraction[J]. Environmental Science & Technology, 2007, 41(16):5672-5678.
    [50] STYRISHAVE B, MORTENSEN M, KROGH P H, et al. Solid-phase microextraction (SPME) as a tool to predict the bioavailability and toxicity of pyrene to the springtail, Folsomia candida, under various soil conditions[J]. Environmental Science & Technology, 2008, 42(4):1332-1336.
    [51] FERNANDEZ L A, MACFARLANE J K, TCACIUC A P, et al. Measurement of freely dissolved PAH concentrations in sediment beds using passive sampling with low-density polyethylene strips[J]. Environmental Science & Technology, 2009, 43(43):1430-1436.
    [52] EEK E, CORNELISSEN G, BREEDVELD G D. Field measurement of diffusional mass transfer of HOCs at the sediment-water interface[J]. Environmental Science & Technology, 2010, 44(17):6752-6759.
    [53] VLAHOS P, HARNER T. Thin-film passive samplers for detection of hydrophobic organic contaminants and estrogenicity in various environments[P], U.S. Patent:20110070597, 2011.
    [54] CHEN C E, ZHANG H, JONES K C. A novel passive water sampler for in situ sampling of antibiotics[J]. Journal of Environmental Monitoring, 2012, 14(6):1523-1530.
    [55] DING S, SUN Q, XU D, et al. High-resolution simultaneous measurements of dissolved reactive phosphorus and dissolved sulfide:The first observation of their simultaneous release in sediments[J]. Environmental Science & Technology, 2012, 46(15):8297-8304.
    [56] LIU H H, BAO L J, FENG W H, et al. A multisection passive sampler for measuring sediment porewater profile of dichlorodiphenyltrichloroethane and its metabolites[J]. Analytical Chemistry, 2013, 85(15):7117-7124.
    [57] LIU H H, BAO L J, ZHANG K, et al. Novel passive sampling device for measuring sediment-water diffusion fluxes of hydrophobic organic chemicals[J]. Environmental Science & Technology, 2013, 47(17):9866-9873.
    [58] POURAN H M, MARTIN F L, ZHANG H. Measurement of ZnO nanoparticles using diffusive gradients in thin films:Binding and diffusional characteristics[J]. Analytical Chemistry, 2014, 86(12):5906-5913.
    [59] PELCOVÁ P, DOČEKALOVÁ H, KLECKEROVÁ A. Determination of mercury species by the diffusive gradient in thin film technique and liquid chromatography——atomic fluorescence spectrometry after microwave extraction[J]. Analytica Chimica Acta, 2015, 866:21-26.
    [60] GOLDMAN A E, CADIEUX S B, WHITE J R, et al. Passive sampling method for high-resolution concentration and isotopic composition of dissolved methane in Arctic lakes[J]. Limnology & Oceanography Methods, 2016, 14(2):69-78.
    [61] ZENDONG Z, BERTRAND S, HERRENKNECHT C, et al. Passive sampling and high resolution mass spectrometry for chemical profiling of french coastal areas with a focus on marine biotoxins[J]. Environmental Science & Technology, 2016, 50(16):8522-8529.
    [62] KUDELA R M. Passive sampling for freshwater and marine algal toxins[J]. Comprehensive Analytical Chemistry, 2017, 78:379-409.
    [63] VERWEIJ F, BOOIJ K, SATUMALAY K, et al. Assessment of bioavailable PAH, PCB and OCP concentrations in water, using semipermeable membrane devices (SPMDs), sediments and caged carp[J]. Chemosphere, 2004, 54(11):1675-1689.
    [64] RANTALAINEN A L, PAASIVIRTA J, HERVE S. Uptake of chlorohydrocarbons from soil by lipid-containing semipermeable membrane devices (SPMDs)[J]. Chemosphere, 1998, 36(6):1415-1427.
    [65] KOELMANS A A, POOT A, LANGE H J D, et al. Estimation of in situ sediment-to-water fluxes of polycyclic aromatic hydrocarbons, polychlorobiphenyls and polybrominated diphenylethers[J]. Environmental Science & Technology, 2010, 44(8):3014-3020.
    [66] MENEGÁRIO A A, LNM Y, LUKO K S, et al. Use of diffusive gradient in thin films for in situ measurements:A review on the progress in chemical fractionation, speciation and bioavailability of metals in waters[J]. Analytica Chimica Acta, 2017, 983:54-66.
    [67] HUCKINS J N, MANUWEERA G K, PETTY J D, et al. Lipid-containing semipermeable membrane devices for monitoring organic contaminants in water[J]. Environmental Science & Technology, 1993, 27(12):2489-2496.
    [68] HUCKINS J N, PETTY J D, LEBO J A, et al. Development of the permeability/performance reference compound approach for in situ calibration of semipermeable membrane devices[J]. Environmental Science & Technology, 2002, 36(1):85-91.
    [69] VRANA B, ALLAN I J, GREENWOOD R, et al. Passive sampling techniques for monitoring pollutants in water[J]. Trends in Analytical Chemistry, 2005, 24(10):845-868.
    [70] DIFILIPPO E L, EGANHOUSE R P. Assessment of PDMS-water partition coefficients:Implications for passive environmental sampling of hydrophobic organic compounds[J]. Environmental Science & Technology, 2010, 44(18):6917-6925.
    [71] CHEN Y, PAWLISZYN J. Kinetics and the on-site application of standards in a solid-phase microextration fiber[J]. Analytical Chemistry, 2004, 76(19):5807-5815.
    [72] MAZZELLA N, LISSALDE S, MOREIRA S, et al. Evaluation of the use of performance reference compounds in an Oasis-HLB adsorbent based passive sampler for improving water concentration estimates of polar herbicides in freshwater[J]. Environmental Science & Technology, 2010, 44(5):1713-1719.
    [73] HUCKINS J N, BOOIJ K, PETTY J D. Fundamentals of SPMDs//Monitors of Organic Chemicals in the Environment[M]. Boston, MA, US:Springer, 2006.
    [74] TOMASZEWSKI J E, LUTHY R G. Field deployment of polyethylene devices to measure PCB concentrations in pore water of contaminated sediment[J]. Environmental Science & Technology, 2008, 42(16):6086-6091.
    [75] VRANA B, MILLS G A, KOTTERMAN M, et al. Modelling and field application of the Chemcatcher passive sampler calibration data for the monitoring of hydrophobic organic pollutants in water[J]. Environmental Pollution, 2007, 145(3):895-904.
    [76] LIU H H, WONG C S, ZENG E Y. Recognizing the limitations of performance reference compound (PRC)-calibration technique in passive water sampling[J]. Environmental Science & Technology, 2013, 47(18):10104.
    [77] GRECKI T, NAMIES'NIK J. Passive sampling[J]. Trends in Analytical Chemistry, 2002, 21(4):276-291.
    [78] VANOPLOO P, WHITE A I, MACDONALD B, et al. The use of peepers to sample pore water in acid sulphate soils[J]. European Journal of Soil Science, 2008, 59(4):762-770.
    [79] CARIGNAN R, RAPIN F, TESSIER A. Sediment porewater sampling for metal analysis:A comparison of techniques[J]. Geochimica Et Cosmochimica Acta, 1985, 49(11):2493-2497.
    [80] VIEL M, BARBANTI A, LANGONE L, et al. Nutrient profiles in the pore water of a deltaic lagoon:Methodological considerations and evaluation of benthic fluxes[J]. Estuarine Coastal and Shelf Science, 1991, 33(4):361-382.
    [81] VROBLESKY D A, CAMPBELL T R. Equilibration times, compound selectivity, and stability of diffusion samplers for collection of ground-water VOC concentrations[J]. Advances in Environmental Research, 2001, 5(1):1-12.
    [82] ZHANG H, DAVISON W, GADI R, et al. In situ measurement of dissolved phosphorus in natural waters using DGT[J]. Analytica Chimica Acta, 1998, 370(1):29-38.
    [83] GAO Y, LEERMAKERS M, BILLON G, et al. High resolution profiles of trace metals in pore waters of marine and riverine sediments assessed by DET and DGT[J]. Chinese Journal of Geochemistry, 2006, 362(1-3):266-277.
    [84] DEVRIES C R, WANG F. In situ two-dimensional high-resolution profiling of sulfide in sediment interstitial waters[J]. Environmental Science & Technology, 2003, 37(4):792-797.
    [85] GAO Y, SEBASTIAAN V D V, BAEYENS W. Two dimensional images of dissolved sulphide and metals in anoxic sediments by a novel DGT probe and optical scanning techniques[J]. Trends in Analytical Chemistry, 2015, 66:63-71.
    [86] LI W, ZHAO J, LI C, et al. Speciation measurements of uranium in alkaline waters using diffusive gradients in thin films technique[J]. Analytica Chimica Acta, 2006, 575(2):274-280.
    [87] STOCKDALE A, BRYAN N D. Application of DGT to high pH environments:Uptake efficiency of radionuclides of different oxidation states onto Chelex binding gel.[J]. Environmental Science Processes & Impacts, 2013, 15(5):1087-1091.
    [88] PESCIM G F, MARRACH G, VANNUCI-SILVA M, et al. Speciation of lead in seawater and river water by using Saccharomyces cerevisiae immobilized in agarose gel as a binding agent in the diffusive gradients in thin films technique[J]. Analytical & Bioanalytical Chemistry, 2012, 404(5):1581-1588.
    [89] DE OLIVEIRA R L, PEDROBOM J H, MENEGÁRIO A A, et al. Determination of in situ speciation of manganese in treated acid mine drainage water by using multiple diffusive gradients in thin films devices.[J]. Analytica Chimica Acta, 2013, 799(17):23-28.
    [90] GIUSTI L, BARAKAT S. The monitoring of Cr(Ⅲ) and Cr(Ⅵ) in natural water and synthetic solutions:An assessment of the performance of the DGT and DCP methods[J]. Water Air & Soil Pollution, 2005, 161(1-4):313-334.
    [91] ROLISOLA A M, SUÁREZ C A, MENEGÁRIO A A, et al. Speciation analysis of inorganic arsenic in river water by Amberlite IRA 910 resin immobilized in a polyacrylamide gel as a selective binding agent for As(Ⅴ) in diffusive gradient thin film technique.[J]. Analyst, 2014, 139(17):4373-4380.
    [92] HAN C, DING S, YAO L, et al. Dynamics of phosphorus-iron-sulfur at the sediment-water interface influenced by algae blooms decomposition[J]. Journal of Hazardous Materials, 2015, 300:329-337.
    [93] DING S, JIA F, XU D, et al. High-resolution, two-dimensional measurement of dissolved reactive phosphorus in sediments using the diffusive gradients in thin films technique in combination with a routine procedure[J]. Environmental Science & Technology, 2011, 45(22):9680-9686.
    [94] DING S, WANG Y, XU D, et al. Gel-based coloration technique for the submillimeter-scale imaging of labile phosphorus in sediments and soils with diffusive gradients in thin films[J]. Environmental Science & Technology, 2013, 47(14):7821-7829.
    [95] DING S, YAN W, DAN W, et al. In situ, high-resolution evidence for iron-coupled mobilization of phosphorus in sediments[J]. Scitific Reports, 2016, 6:24341.
    [96] CHEM M, DING S, LIU L, et al. Kinetics of phosphorus release from sediments and its relationship with iron speciation influenced by the mussel (Corbicula fluminea) bioturbation[J]. Science of the Total Environment, 2016, 542(Part A):833-840.
    [97] DING S, DI X, WANG Y, et al. Simultaneous measurements of eight oxyanions using high-capacity diffusive gradients in thin films (Zr-Oxide DGT) with a high-efficiency elution procedure[J]. Environmental Science & Technology, 2016, 50(14):7572-7580.
    [98] BJÖRKLUND B L, MORRISON G M, KINGSTON J, et al. Performance of an in situ passive sampling system for metals in stormwater[J]. Journal of Environmental Monitoring, 2002, 4(2):258-262.
    [99] ALLAN I J, KNUTSSON J, GUIGUES N, et al. Evaluation of the Chemcatcher and DGT passive samplers for monitoring metals with highly fluctuating water concentrations[J]. Journal of Environmental Monitoring, 2007, 9(7):672-681.
    [100] PERSSON L B, MORRISON G M, FRIEMANN J U, et al. Diffusional behaviour of metals in a passive sampling system for monitoring aquatic pollution[J]. Journal of Environmental Monitoring, 2001, 3(6):639-645.
    [101] BRUMBAUGH W G, PETTY J D, MAY T W, et al. A passive integrative sampler for mercury vapor in air and neutral mercury species in water[J]. Chemosphere-Global Change Science, 2000, 2(1):1-9.
    [102] SLAVEYKOVA V I, PARTHASARATHY N, BUFFLE J, et al. Permeation liquid membrane as a tool for monitoring bioavailable Pb in natural waters[J]. Science of the Total Environment, 2004, 328(1-3):55-68.
    [103] BRUMBAUGH W G, PETTY J D, HUCKINS J N, et al. Stabilized liquid membrane device (SLMD) for the passive, integrative sampling of labile metals in water[J]. Water, Air and Soil Pollution, 2002, 133(1):109-119.
    [104] LEBO J A, GALE R W, PETTY J D, et al. Use of the semipermeable membrane device as an in situ sampler of waterborne bioavailable PCDD and PCDF residues at sub-parts-per-quadrillion concentrations[J]. Environmental Science & Technology, 1995, 29(11):2886-2892.
    [105] SABALIUNAS D. Semipermeable membrane devices in monitoring of organic pollutants in the aquatic environment[D]. Lund, Sweden:Department of Ecology, Lund University, 1999.
    [106] TANG J, CHEN S, XU Y, et al. Calibration and field performance of triolein embedded acetate membranes for passive sampling persistent organic pollutants in water[J]. Environmental Pollution, 2012, 164(1):158-163.
    [107] XU Y, WANG Z, KE R, et al. Accumulation of organochlorine pesticides from water using triolein embedded cellulose acetate membranes[J]. Environmental Science & Technology, 2005, 39(4):1152-1157.
    [108] HYNE R V, PABLO F, AISTROPE M, et al. Comparison of time-integrated pesticide concentrations determined from field-deployed passive samplers with daily river-water extractions[J]. Environmental Toxicology and Chemistry, 2004, 23(9):2090-2098.
    [109] ZHAO W, HAN M, DAI S, et al. Ionic liquid-containing semipermeable membrane devices for monitoring the polycyclic aromatic hydrocarbons in water[J]. Chemosphere, 2006, 62(10):1623-1629.
    [110] HYNE R V, AISTROPE M. Calibration and field application of a solvent-based cellulose membrane passive sampling device for the monitoring of polar herbicides[J]. Chemosphere, 2008, 71(4):611-620.
    [111] BAO L J, XU S P, LIANG Y, et al. Development of a low-density polyethylene-containing passive sampler for measuring dissolved hydrophobic organic compounds in open waters[J]. Environmental Toxicology and Chemistry, 2012, 31(5):1012-1018.
    [112] LEBLANC C J, STALLARD W M, GREEN P G, et al. Passive sampling screening method using thin-layer chromatography plates[J]. Environmental Science & Technology, 2003, 37(17):3966-3971.
    [113] 戴国华, 刘新会. 影响沉积物-水界面持久性有机污染物迁移行为的因素研究[J]. 环境化学, 2011, 30(1):224-230.

    DAI G H, LIU X H. Factors affacting the migration of persistent organic pollutants across the sediment-water interface of aquatic environment[J]. Environmental Chemistry, 2011, 30(1):224-230(in Chinese).

    [114] OEN A M, JANSSEN E M, CORNELISSEN G, et al. In situ measurement of PCB pore water concentration profiles in activated carbon-amended sediment using passive samplers[J]. Environmental Science & Technology, 2011, 45(9):4053-4059.
    [115] 王岙. 共存污染物对沉积物及其主要组分吸附阿特拉津的影响研究[D]. 长春:吉林大学, 2009. WANG A. Studies on effects of the coexisted contaminants on the adsorption characteristics of atrazine onto the surficial sediments and their main components[D]. Changchun:Jilin University, 2009(in Chinese).
    [116] 马旭. 环境中汞的被动采样和形态测定方法及其应用研究[D]. 北京:中国科学院大学, 2014. MA X. Method development and application of passive sampling and speciation analysis for mercury in environmental sample[D]. Beijing:University of Chinese Academy of Sciences, 2014(in Chinese).
    [117] 雷沛, 张洪, 单保庆. 一种高分辨测定孔隙水自由溶解态污染物浓度被动采样器[P]. 中国专利:201610130251.0, 2016. LEI P, ZHANG H, SHAN B Q. A passive sampler with high resolution used for determining freely dissolved concentrations of contaminants in the sediment pore water[P]. Chinese Patent:201610130251.0

    , 2016(in Chinese).

  • 加载中
计量
  • 文章访问数:  2895
  • HTML全文浏览数:  2783
  • PDF下载数:  413
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-07-31
  • 刊出日期:  2018-03-15
雷沛, 单保庆, 张洪. 水体被动采样技术的发展与应用[J]. 环境化学, 2018, 37(3): 480-496. doi: 10.7524/j.issn.0254-6108.2017073103
引用本文: 雷沛, 单保庆, 张洪. 水体被动采样技术的发展与应用[J]. 环境化学, 2018, 37(3): 480-496. doi: 10.7524/j.issn.0254-6108.2017073103
LEI Pei, SHAN Baoqing, ZHANG Hong. Development and applications of passive sampling techniques in aquatic environment: A review[J]. Environmental Chemistry, 2018, 37(3): 480-496. doi: 10.7524/j.issn.0254-6108.2017073103
Citation: LEI Pei, SHAN Baoqing, ZHANG Hong. Development and applications of passive sampling techniques in aquatic environment: A review[J]. Environmental Chemistry, 2018, 37(3): 480-496. doi: 10.7524/j.issn.0254-6108.2017073103

水体被动采样技术的发展与应用

  • 1.  深圳大学光电工程学院光电子器件与系统(教育部/广东省)重点实验室, 深圳, 518060;
  • 2.  中国科学院生态环境研究中心环境水质学国家重点实验室, 北京, 100085;
  • 3.  深圳大学高等研究院, 深圳, 518060;
  • 4.  南京大学环境学院, 南京, 210046
基金项目:

中国博士后科学基金(2017M622782)和国家自然科学基金(21547009)资助

摘要: 被动采样技术不需要任何外力,具有操作简单、安全可靠等特点,在环境领域表现出良好的应用前景.本文回顾了水体被动采样技术的发展历程,简要介绍了被动采样技术定量方法,介绍并讨论了典型无机、有机水体被动采样装置特点、应用和发展趋势.其中,沉积物-水界面有机污染物被动采样以及水体无机/有机污染物被动采样是近些年被动采样技术的重要发展方向.最后,对水体被动采样技术在构型设计、应用范围、理论推进、与生物分析结合以及方法标准化方面的发展前景进行了展望.

English Abstract

参考文献 (117)

返回顶部

目录

/

返回文章
返回