斜生栅藻与氰化钾的相互作用

刘青青, 张闪闪, 邹华, 史红星, 黄超群. 斜生栅藻与氰化钾的相互作用[J]. 环境化学, 2018, 37(3): 552-558. doi: 10.7524/j.issn.0254-6108.2017073001
引用本文: 刘青青, 张闪闪, 邹华, 史红星, 黄超群. 斜生栅藻与氰化钾的相互作用[J]. 环境化学, 2018, 37(3): 552-558. doi: 10.7524/j.issn.0254-6108.2017073001
LIU Qingqing, ZHANG Shanshan, ZOU Hua, SHI Hongxing, HUANG Chaoqun. Interactions between Scenedesmus obliquus and potassium cyanide[J]. Environmental Chemistry, 2018, 37(3): 552-558. doi: 10.7524/j.issn.0254-6108.2017073001
Citation: LIU Qingqing, ZHANG Shanshan, ZOU Hua, SHI Hongxing, HUANG Chaoqun. Interactions between Scenedesmus obliquus and potassium cyanide[J]. Environmental Chemistry, 2018, 37(3): 552-558. doi: 10.7524/j.issn.0254-6108.2017073001

斜生栅藻与氰化钾的相互作用

  • 基金项目:

    普通高校学术学位研究生科研创新计划项目(KYLX16_0810)和国民核生化灾害防护国家重点实验室资助.

Interactions between Scenedesmus obliquus and potassium cyanide

  • Fund Project: Supported by the Fundamental Research Funds for the Central Universities (KYLX16_0810) and the Basic Research Project of the State Key Laboratory of NBC Protection for Civilian of China.
  • 摘要: 以斜生栅藻(Scenedesmus obliquus)为实验对象,研究斜生栅藻对氰化钾(KCN)的去除效果及KCN胁迫对斜生栅藻生长和抗氧化系统的影响.结果表明,斜生栅藻对0.1—100 mg·L-1浓度范围内的KCN都有一定的去除能力,最大去除率达65.3%;在氰化钾胁迫下,栅藻生长速率降低,叶绿素a含量受到明显抑制且明显低于对照.KCN对斜生栅藻的96 h半数抑制浓度EC50值为0.84 mg·L-1.此外,超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性随KCN胁迫浓度的增大而升高;栅藻丙二醛(MDA)含量在KCN胁迫下变高.通过本研究发现,绿藻对氰化物有潜在的去除能力,为含氰废水的生物处理提供了理论基础.
  • 加载中
  • [1] 郑伟,周林成,徐艳艳,等.含氰化物废水生物处理研究进展[J].化工环保,2011,31(2):123-128.

    ZHENG W, ZHOU L C, XU Y Y, et al. Research progresses in bio-treatment of wastewater containing cyanide[J]. Environmental Protection of Chemical Industry, 2011, 31(2):123-128(in Chinese).

    [2] 陈华进.高浓度含氰废水处理[D].南京:南京工业大学,2005. CHEN H J. Study on treatment for high concentration cyanide-contained wastewater[D].Nanjing:Nanjing University of Technology, 2005(in Chinese).
    [3] 仲崇波,王成功,陈炳辰.氰化物的危害及其处理方法综述[J].金属矿山,2001(5):44-47. ZHONG C B, WANG C G, CHEN B C. Review of the dangers of cyanides and their treatment methods[J]. Metal Mine, 2001

    (5):44-47(in Chinese).

    [4] 夏亚穆,郭英兰,孙岩.生物法降解氰化物的研究进展[J].化学与生物工程,2010,27(1):6-8

    , 29. XIA Y M, GUO Y L, SUN Y. Research progress of degradation of cyanide by biological methods[J]. Chemistry & Bioengineering,2010,27(1):6-8, 29(in Chinese).

    [5] ARELLANO C A P, MARTINEZ S S. Indirect electrochemical oxidation of cyanide by hydrogen peroxide generated at a carbon cathode[J]. International Journal of Hydrogen Energy, 2007, 32(15):3163-3169.
    [6] 王同蕾,王丽荣,田海燕.饮用水中氰化物的检测和处理技术[J].中国卫生检验杂志,2008(4):732-733. WANG T L, WANG L R, TIAN H Y. Detection and treatment of cyanide in drinking water[J].Chinese Journal of Health Laboratory Technology, 2008

    (4), 732-733(in Chinese).

    [7] MARTINKOVA L, CHMATAL M. The integration of cyanide hydratase and tyrosinase catalysts enables effective degradation of cyanide and phenol in coking wastewaters[J]. Water Research, 2016, 102:90-95.
    [8] AKCIL A, KARAHAN A G, CIFTCI H, et al. Biological treatment of cyanide by natural isolated bacteria (Pseudomonas sp.)[J]. Minerals Engineering, 2003, 16(7):643-649.
    [9] DUMESTRE A, CHONE T, PORTAL J, et al. Cyanide degradation under alkaline conditions by a strain of Fusarium solani isolated from contaminated soils[J]. Applied and Environmental Microbiology, 1997, 63(7):2729-2734.
    [10] GURBUZ F, CIFTCI H, AKCIL A. Biodegradation of cyanide containing effluents by Scenedesmus obliquus[J]. Journal of Hazardous Materials, 2009, 162(1):74-79.
    [11] GURBUZ F, CIFTCI H, AKCIL A, et al. Microbial detoxification of cyanide solutions:A new biotechnological approach using algae[J].Hydrometallurgy, 2004, 72(1):167-176.
    [12] CHAN S M N, LUAN T, WONE M H, et al. Removal and biodegradation of polycyclic aromatic hydrocarbons by Selenastrum capricornutum[J]. Environmental Toxicology and Chemistry, 2006, 25(7):1772-1779.
    [13] ELBAZ A, WEI Y Y, MENG Q, et al. Mercury-induced oxidative stress and impact on antioxidant enzymes in Chlamydomonas reinhardtii[J]. Ecotoxicology, 2010, 19(7):1285-1293.
    [14] WONG J P K, WONG Y S, TAM N F Y. Nickel biosorption by two chlorella species, C. Vulgaris(a commercial species) and C. Miniata(a local isolate)[J]. Bioresource Technology, 2000, 73(2):133-137.
    [15] DASH R R, GAUR A, BALOMAJUMDER C. Cyanide in industrial wastewaters and its removal:A review on biotreatment[J]. Journal of Hazardous Materials, 2009, 163(1):1-11.
    [16] 辜博.高含油微藻选育与DGAT2基因功能研究[D].海南:海南大学,2011. GU B. Breeding of high lipid algae and DGATZ gene function[D]. Hainan:Hainan University, 2011(in Chinese).
    [17]
    [18] 张晓晶,李畅游,张生,等.乌梁素海叶绿素a与理化因子的统计分析[J].环境化学,2010,29(2):315-319.

    ZHANG X J, LI C Y, ZHANG S, et al. Statistical analysis between chlorophyll-a concentration and physical-chemical factors in the lake of Wuliangsuhai[J], Environmental Chemistry, 2010, 29(2):315-319(in Chinese).

    [19] ONE E, CUELLO J L. Carbon dioxide mitigation using thermophilic cyanobacteria[J]. Biosystems Engineering, 2007, 96(1):129-134.
    [20] JIN Z P, LUO K, ZHANG S, et al. Bioaccumulation and catabolism of prometryne in green algae[J]. Chemosphere, 2012, 87(3):278-284.
    [21] BOTZ M M, MUDDER T I, AKCIL A U. Chapter 35-Cyanide treatment:Physical, chemical, and biological processes[J]. Gold Ore Processing, 2016:619-645.
    [22] ZHANG S, QIU C B, ZHOU Y, et al. Bioaccumulation and degradation of pesticide fluroxypyr are associated with toxic tolerance in green alga Chlamydomonas reinhardtii[J]. Ecotoxicology, 2011, 20(2):337-347.
    [23] BI Y F, MIAO S S, LU Y C, et al. Phytotoxicity, bioaccumulation and degradation of isoproturon in green algae[J]. Journal of Hazardous Materials, 2012, 243:242-249.
    [24] LIM S L, CHU W L, PHANG S M. Use of Chlorella vulgaris for bioremediation of textile wastewater[J]. Bioresource Technology, 2010, 101(19):7314-7322.
    [25] 国家环境保护总局.水和废水监测分析方法[M].北京:中国环境科学出版社,2002. State Environment Protection Administration. Monitoring and analysis method of water and waste and wastewater[M]. China Environment Science Press, 2002(in Chinese).
    [26] 杨国远,万凌琳,雷学青,等.重金属铅、铬胁迫对斜生栅藻的生长、光合性能及抗氧化系统的影响[J].环境科学学报,2014,34(6):1606-1614.

    YANG G Y, WAN L L, LEI X Q, et al. Effects of lead and chromium on the growth, photosynthetic performance, and antioxidant activity of Scenedesmus obliquus[J]. Acta Scientiae Circumstantiae, 2014, 34(6):1606-1614(in Chinese).

    [27] SUZUKI N, MITTLER R. Reactive oxygen species and temperature stresses:A delicate balance between signaling and destruction[J]. Physiologia Plantarum, 2006, 126:45-51.
    [28] GUO L W, JING C, LING T, et al. Fluroxypyr triggers oxidative damage by producing superoxide and hydrogen peroxide in rice (Oryzasativa)[J]. Ecotoxicology, 2010, 19:124-132.
    [29] 惠竹梅,王智真,胡勇,等.24-表油菜素内酯对低温胁迫下葡萄幼苗抗氧化系统及渗透调节物质的影响[J].中国农业科学,2013,46(5):1005-1013.

    HUI Z M, WANG Z Z, HU Y, et al. Effects of 24-epibrassinolide on the antioxidant system and osmotic adjustment substance in grape seedlings (V. vinifera L.) under chilling stress[J]. Scientia Agricultura Sinica, 2013, 46(5):1005-1013(in Chinese).

  • 加载中
计量
  • 文章访问数:  1512
  • HTML全文浏览数:  1475
  • PDF下载数:  257
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-07-30
  • 刊出日期:  2018-03-15
刘青青, 张闪闪, 邹华, 史红星, 黄超群. 斜生栅藻与氰化钾的相互作用[J]. 环境化学, 2018, 37(3): 552-558. doi: 10.7524/j.issn.0254-6108.2017073001
引用本文: 刘青青, 张闪闪, 邹华, 史红星, 黄超群. 斜生栅藻与氰化钾的相互作用[J]. 环境化学, 2018, 37(3): 552-558. doi: 10.7524/j.issn.0254-6108.2017073001
LIU Qingqing, ZHANG Shanshan, ZOU Hua, SHI Hongxing, HUANG Chaoqun. Interactions between Scenedesmus obliquus and potassium cyanide[J]. Environmental Chemistry, 2018, 37(3): 552-558. doi: 10.7524/j.issn.0254-6108.2017073001
Citation: LIU Qingqing, ZHANG Shanshan, ZOU Hua, SHI Hongxing, HUANG Chaoqun. Interactions between Scenedesmus obliquus and potassium cyanide[J]. Environmental Chemistry, 2018, 37(3): 552-558. doi: 10.7524/j.issn.0254-6108.2017073001

斜生栅藻与氰化钾的相互作用

  • 1.  江南大学环境与土木工程学院, 无锡, 214122;
  • 2.  防化研究院国民核生化灾害防护国家重点实验室, 北京, 102205
基金项目:

普通高校学术学位研究生科研创新计划项目(KYLX16_0810)和国民核生化灾害防护国家重点实验室资助.

摘要: 以斜生栅藻(Scenedesmus obliquus)为实验对象,研究斜生栅藻对氰化钾(KCN)的去除效果及KCN胁迫对斜生栅藻生长和抗氧化系统的影响.结果表明,斜生栅藻对0.1—100 mg·L-1浓度范围内的KCN都有一定的去除能力,最大去除率达65.3%;在氰化钾胁迫下,栅藻生长速率降低,叶绿素a含量受到明显抑制且明显低于对照.KCN对斜生栅藻的96 h半数抑制浓度EC50值为0.84 mg·L-1.此外,超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性随KCN胁迫浓度的增大而升高;栅藻丙二醛(MDA)含量在KCN胁迫下变高.通过本研究发现,绿藻对氰化物有潜在的去除能力,为含氰废水的生物处理提供了理论基础.

English Abstract

参考文献 (29)

返回顶部

目录

/

返回文章
返回