C60在模拟气溶胶中的光降解实验与理论计算

罗天烈, 邵建平, 谢晴, 陈景文, 李雪花. C60在模拟气溶胶中的光降解实验与理论计算[J]. 环境化学, 2016, 35(11): 2253-2260. doi: 10.7524/j.issn.0254-6108.2016.11.2016033002
引用本文: 罗天烈, 邵建平, 谢晴, 陈景文, 李雪花. C60在模拟气溶胶中的光降解实验与理论计算[J]. 环境化学, 2016, 35(11): 2253-2260. doi: 10.7524/j.issn.0254-6108.2016.11.2016033002
LUO Tianlie, SHAO Jianping, XIE Qing, CHEN Jingwen, LI Xuehua. A combined experimental and computational investigation on photodegradation of C60 in diverse model aerosol liquid layer[J]. Environmental Chemistry, 2016, 35(11): 2253-2260. doi: 10.7524/j.issn.0254-6108.2016.11.2016033002
Citation: LUO Tianlie, SHAO Jianping, XIE Qing, CHEN Jingwen, LI Xuehua. A combined experimental and computational investigation on photodegradation of C60 in diverse model aerosol liquid layer[J]. Environmental Chemistry, 2016, 35(11): 2253-2260. doi: 10.7524/j.issn.0254-6108.2016.11.2016033002

C60在模拟气溶胶中的光降解实验与理论计算

  • 基金项目:

    国家自然科学基金(21477016)和中央高校基本科研业务费专项资金(DUT16LK13)资助.

A combined experimental and computational investigation on photodegradation of C60 in diverse model aerosol liquid layer

  • Fund Project: Supported by the National Natural Science Foundation of China (21477016) and the Fundamental Research Funds for the Central Universities (DUT16LK13).
  • 摘要: 燃烧及碳纳米材料的生产和处置过程中,均有可能产生富勒烯(C60)等纳米颗粒物.这些纳米颗粒物进入大气后,主要存在于气溶胶中.由于本身的共轭结构C60可以吸收紫外可见光发生光氧化转化,研究C60在气溶胶中的光转化对于评价其环境归趋具有重要意义.本研究以环己烷、甲苯和二氯甲烷等溶剂模拟气溶胶表面液体层,采用模拟日光实验和密度泛函理论(DFT)计算研究了C60在3种溶剂中的光化学转化.实验结果表明,C60在环己烷、甲苯和二氯甲烷中的光降解符合准一级动力学,光解速率常数分别为(0.80±0.01)×10-3、(3.80±0.02)×10-3、(14.80±0.20)×10-3 min-1.DFT计算结果表明,C60在3种溶剂中均可以通过光致产生1O2发生氧化反应.然而,仅在二氯甲烷中C60可以通过电子转移生成O2·-来促进C60的光转化.甲苯溶剂中激发态甲苯分子可以敏化C60产生C60·-从而加快C60的降解.理论计算结果有助于解释实验中C60在二氯甲烷中光解速率最快,在甲苯中光解速率比在环己烷中快的现象.
  • 加载中
  • [1] TIWARI A J, ASHRAF-KHORASSANI M, MARR L C. C60 fullerenes from combustion of common fuels[J]. Science of the Total Environment, 2016, 547:254-260.
    [2] HOWARD J B, MCKINNON T J, MAKAROVSKY Y, et al. Fullerenes C60 and C70 in flames[J]. Nature, 1991, 352:139-141.
    [3] YEGANEH B, KULL C M, HULL M S, et al. Characterization of airborne particles during production of carbonaceous nanomaterials[J]. Environment Science & Technology, 2008, 42(12):4600-4606.
    [4] UTSUNOMIYA S, JENSEN K A, KEELER G J, et al. Uraninite and fullerene in atmospheric particulates[J]. Environment Science & Technology, 2002, 36(23):4943-4947.
    [5] SANCHIS J, BERROJALBIZ N, CABALLERO G, et al. Occurrence of aerosol-bound fullerenes in the Mediterranean Sea atmosphere[J]. Environment Science & Technology, 2012, 46(3):1335-1343.
    [6] TIWARI A J, MORRIS J R, EJERANO E P, et al. Oxidation of C60 aerosols by atmospherically relevant levels of O3[J]. Environment Science & Technology, 2014, 48(5):2706-2714.
    [7] TIWARI A J, MARR L C. The role of atmospheric transformations in determining environmental impacts of carbonaceous nanoparticles[J]. Journal of Environmental Quality, 2010, 39(6):1883-1895.
    [8] HOU W C, JAFVERT C T. Photochemical transformation of aqueous C60 clusters in sunlight[J]. Environment Science & Technology, 2009, 43(2):362-367.
    [9] TALIANI C, RUANI G, ZAMBONI R, et al. Light-induced oxygen incision of C60[J]. Journal of the Chemical Society, Chemical Communications, 1993, 24:220-222.
    [10] SCHUSTER D I, BARAN P S, HATCH R K, et al. The role of singlet oxygen in the photochemical formation of C60O[J]. Chemical Communications, 1998, 22:2493-2494.
    [11] LEE J, YAMAKOSHI Y, HUGHES J B, et al. Mechanism of C60 photoreactivity in water:Fate of triplet state and radical anion and production of reactive oxygen species[J]. Environment Science & Technology, 2008, 42(9):3459-3464.
    [12] JUHA L, HAMPLOVAÁ V, KODYMOVÁ J, et al. Reactivity of fullerenes with chemically generated singlet oxygen[J]. Journal of the Chemical Society, Chemical Communications, 1994, 23:2437-2438.
    [13] HOU W C, JAFVERT C. Photochemistry of aqueous C60 clusters:Evidence of 1O2 formation and its role in mediating C60 phototransformation[J]. Environment Science & Technology, 2009, 43(14):5257-5262.
    [14] PIETA P, ZUKOWSKA G Z, DAS S K, et al. Mechanism of reductive C60 electropolymerization in the presence of dioxygen and application of the resulting fullerene polymer for preparation of a conducting composite with single-wall carbon nanotubes[J]. Journal of Physical. Chemistry C, 2010, 114(18):8150-8160.
    [15] SHEN L, JI H F, ZHANG H Y. A theoretical elucidation on the solvent-dependent photosensitive behaviors of C60[J]. Photochemistry and Photobiology, 2006, 3(82):798-800.
    [16] ROGGE W F, HILDEMANN L M, MAZUREK M A, et al. Sources of fine organic aerosol 2. Noncatalyst and catalyst-equipped automobiles and heavy-duty diesel trucks[J]. Environment Science & Technology, 1993, 27(4):636-651.
    [17] MCDOW S R, SUN Q R, VARTIAINEN M, et al. Effect of composition and state of organic-components on polycyclic aromatic hydrocarbon decay in atmospheric aerosols[J]. Environment Science & Technology, 1994, 28(12):2147-2153.
    [18] MCDOW S R, JANG M S, HONG Y, et al. An approach to studying the effect of organic composition on atmospheric aerosol photochemistry[J]. Journal of Geophysical Research Atmospheres, 1996, 101(14):19593-19600.
    [19] SCHUETZLE D, LEE F S C, PRATER T J, et al. Analysis of atmospheric aerosols[J]. Analytical Chemistry, 2008, 1:485-514.
    [20] RUOFF R S, TSE D S, MALHOTRA R, et al. Solubility of C60 in a variety of solvents[J]. Journal of Physical Chemistry, 1993, 97(13):3379-3383.
    [21] JAFVERT C T, KULKARNI P P. Buckminsterfullerene's (C60) octanol-water partition coefficient (Kow) and aqueous solubility[J]. Environment Science & Technology, 2008, 42(16):5945-5950.
    [22] FEILBERG A, NIELSEN T. Effect of aerosol chemical composition on the photodegradation of nitro-polycyclic aromatic hydrocarbons[J]. Environment Science & Technology, 2000, 34(5):789-797.
    [23] FEILBERG A, NIELSEN T. Photodegradation of nitro-PAHs in viscous organic media used as models of organic aerosols[J]. Environment Science & Technology, 2001, 35(1):108-113.
    [24] OHURA T. Environmental behavior, sources, and effects of chlorinated polycyclic aromatic hydrocarbons[J]. The Scientific World Journal, 2007, 7:372-380.
    [25] CARTIER A, RIVAIL J L. Electronic descriptors in quantitative structure-activity relationships[J]. Chemometrics and Intelligent Laboratory Systems, 1987, 1(4):335-347.
    [26] JI H F, SHEN L. Triplet excited state characters and photosensitization mechanisms of α-terthienyl:A theoretical study[J]. Journal of Photochemistry and Photobiology B:Biology, 2009, 94(1):51-53.
    [27] HEMELSOET K, VAN SPEYBROECK V, WAROQUIER M. A DFT-based investigation of hydrogen abstraction reactions from methylated polycyclic aromatic hydrocarbons[J]. Chem Phys Chem, 2008, 9(16):2349-2358.
    [28] BETOWSKI L D, ENLOW M, RIDDICK L. Calculation of electron affinities of polycyclic aromatic hydrocarbons and solvation energies of their radical anion[J]. Journal of Physical Chemistry A, 2006, 110(47):12927-12946.
    [29] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 09, Revision A.02[P]. Gaussian, Inc., Wallingford C T, 2009.
    [30] TOMASI J, MENNUCCI B, CAMMI R. Quantum mechanical continuum solvation models[J].Chemical Reviews, 2005, 105(8):2999-3093.
    [31] BLOTEVOGEL J, BORCH T, DESYATERIK Y, et al. Quantum chemical prediction of redox reactivity and degradation pathways for aqueous phase contaminants:an example with HMPA[J]. Environmental Science & Technology, 2010, 44(15):5868-5874.
    [32] KALEDIN A L, HUANG Z Q, YIN Q S, et al. Insights into photoinduced electron transfer between[Ru(MPTY)2] 4+ (mptpy=4'(4-methylpyridinio)-2,2':6',2″-terpyridine) and[S2O8]2-:Computational and experimental studies[J]. The Journal of Physical Chemistry A, 2010, 114(21):6284-6297.
    [33] NAMAZIAN M, ALMODARRESIEH H A, NOORBALA M R, et al. DFT calculation of electrode potentials for substituted quinones in aqueous solution[J]. Chemical Physics Letters, 2004, 396(4-6):424-428.
    [34] KAVARNOS G J, TURRO N J. Photosensitization by reversible electron-transfer-theories, experimental-evidence, and examples[J]. Chemical Reviews, 1986, 86 (2):401-449.
    [35] ZHANG S Y, CHEN J W, QIAO X L, et al. Quantum chemical investigation and experimental verification on the aquatic photochemistry of the sunscreen 2-Phenylbenzimidazole-5-Sulfonic Acid[J]. Environment Science & Technology, 2010, 44(19):7484-7490.
    [36] 夏少武, 魏庆莉, 张书圣. C60-甲苯溶液溶剂化作用[J]. 物理化学学报, 1997, 13(11):1029-1033.

    XIA S W, WEI Q L, ZHANG S S. Studies on the solvation of fullerene (C60) in toluene medium[J]. Acta Physico-Chimica Sinica, 1997, 13(11):1029-1033(in Chinese).

    [37] GALLAGHER S H, ARMSTRONG R S, LAY P A, et al. Solvent effects on the electronic spectrum of C60[J]. Journal of Physical Chemistry, 1995, 99(16):5817-5825.
    [38] HWANG Y L, YANG C C, HWANG K C. The spike in the C60·- ESR spectrum:Oxygen effect and negative temperature dependence of the C60O2·- isomerization rate[J]. Journal of Physical Chemistry A, 1997, 101(43):7971-7976.
  • 加载中
计量
  • 文章访问数:  936
  • HTML全文浏览数:  871
  • PDF下载数:  452
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-03-30
  • 刊出日期:  2016-11-15
罗天烈, 邵建平, 谢晴, 陈景文, 李雪花. C60在模拟气溶胶中的光降解实验与理论计算[J]. 环境化学, 2016, 35(11): 2253-2260. doi: 10.7524/j.issn.0254-6108.2016.11.2016033002
引用本文: 罗天烈, 邵建平, 谢晴, 陈景文, 李雪花. C60在模拟气溶胶中的光降解实验与理论计算[J]. 环境化学, 2016, 35(11): 2253-2260. doi: 10.7524/j.issn.0254-6108.2016.11.2016033002
LUO Tianlie, SHAO Jianping, XIE Qing, CHEN Jingwen, LI Xuehua. A combined experimental and computational investigation on photodegradation of C60 in diverse model aerosol liquid layer[J]. Environmental Chemistry, 2016, 35(11): 2253-2260. doi: 10.7524/j.issn.0254-6108.2016.11.2016033002
Citation: LUO Tianlie, SHAO Jianping, XIE Qing, CHEN Jingwen, LI Xuehua. A combined experimental and computational investigation on photodegradation of C60 in diverse model aerosol liquid layer[J]. Environmental Chemistry, 2016, 35(11): 2253-2260. doi: 10.7524/j.issn.0254-6108.2016.11.2016033002

C60在模拟气溶胶中的光降解实验与理论计算

  • 1.  工业生态与环境工程教育部重点实验室, 大连理工大学环境学院, 大连, 116024;
  • 2.  庄河市环境监察大队, 庄河, 116400
基金项目:

国家自然科学基金(21477016)和中央高校基本科研业务费专项资金(DUT16LK13)资助.

摘要: 燃烧及碳纳米材料的生产和处置过程中,均有可能产生富勒烯(C60)等纳米颗粒物.这些纳米颗粒物进入大气后,主要存在于气溶胶中.由于本身的共轭结构C60可以吸收紫外可见光发生光氧化转化,研究C60在气溶胶中的光转化对于评价其环境归趋具有重要意义.本研究以环己烷、甲苯和二氯甲烷等溶剂模拟气溶胶表面液体层,采用模拟日光实验和密度泛函理论(DFT)计算研究了C60在3种溶剂中的光化学转化.实验结果表明,C60在环己烷、甲苯和二氯甲烷中的光降解符合准一级动力学,光解速率常数分别为(0.80±0.01)×10-3、(3.80±0.02)×10-3、(14.80±0.20)×10-3 min-1.DFT计算结果表明,C60在3种溶剂中均可以通过光致产生1O2发生氧化反应.然而,仅在二氯甲烷中C60可以通过电子转移生成O2·-来促进C60的光转化.甲苯溶剂中激发态甲苯分子可以敏化C60产生C60·-从而加快C60的降解.理论计算结果有助于解释实验中C60在二氯甲烷中光解速率最快,在甲苯中光解速率比在环己烷中快的现象.

English Abstract

参考文献 (38)

返回顶部

目录

/

返回文章
返回