不同气团下嘉兴市春季气溶胶的粒径分布特征

吕升, 沈利娟, 李莉, 袁婧, 张孝寒, 章国骏, 王翡. 不同气团下嘉兴市春季气溶胶的粒径分布特征[J]. 环境化学, 2016, 35(8): 1715-1722. doi: 10.7524/j.issn.0254-6108.2016.08.2015122403
引用本文: 吕升, 沈利娟, 李莉, 袁婧, 张孝寒, 章国骏, 王翡. 不同气团下嘉兴市春季气溶胶的粒径分布特征[J]. 环境化学, 2016, 35(8): 1715-1722. doi: 10.7524/j.issn.0254-6108.2016.08.2015122403
LYU Sheng, SHEN Lijuan, LI Li, YUAN Jing, ZHANG Xiaohan, ZHANG Guojun, WANG Fei. Aerosol size distribution under different air masses in spring of Jiaxing[J]. Environmental Chemistry, 2016, 35(8): 1715-1722. doi: 10.7524/j.issn.0254-6108.2016.08.2015122403
Citation: LYU Sheng, SHEN Lijuan, LI Li, YUAN Jing, ZHANG Xiaohan, ZHANG Guojun, WANG Fei. Aerosol size distribution under different air masses in spring of Jiaxing[J]. Environmental Chemistry, 2016, 35(8): 1715-1722. doi: 10.7524/j.issn.0254-6108.2016.08.2015122403

不同气团下嘉兴市春季气溶胶的粒径分布特征

  • 基金项目:

    江苏省大气环境监测与污染控制高技术研究重点实验室开放基金(KHK1408),嘉兴市大气细颗粒物(PM2.5)来源解析及控制技术研究(2014AY21012)和江苏高校优势学科建设工程资助项目(PAPD)资助.

Aerosol size distribution under different air masses in spring of Jiaxing

  • Fund Project: Supported by Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (KHK1408), and the Research of PM2.5 Source Apportionment and Control Technology in Jiaxing (2014AY21012), a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).
  • 摘要: 使用宽范围粒径谱仪(WPS)对嘉兴市2015年5月1-31日10 nm-10 μm的气溶胶粒径分布进行了测定,结合HYSPLIT轨迹模式的气团聚类分型结果,分析了不同类型气团下气溶胶数浓度和表面积浓度的日变化和粒径分布特征.结果表明,观测期间嘉兴市主要受5类气团控制,分别为海洋性气团(Type1,31%)、局地气团(Type2,32%)、西南内陆气团(Type3,25%)、海陆混合气团(Type4,8%)以及西北内陆气团(Type5,4%).气团类型对核模态(10-20 nm)和粗模态(1.0-10 μm)粒子数浓度日变化的影响较大,其次是积聚模态(100-1000 nm)粒子,对爱根核模态(20-100 nm)粒子数浓度日变化的影响较小.不同类型气团下气溶胶数浓度谱分布均为单峰型分布,但是谱分布特征差异较大.不同类型气团下表面积浓度的日变化多为双峰型分布,峰值出现在07:00-09:00和17:00-21:00;气溶胶表面积浓度谱均为三峰型分布,峰值分别位于120-150 nm、500-700 nm和1.2-1.5 μm,Type5气团下的表面积峰值浓度最小,Type3气团下的表面积峰值浓度最大.
  • 加载中
  • [1] SCHWARTZ S E, ANDREAE M O. Uncertainty in climate change caused by aerosol[J]. Science, 1996, 272(24):1121-1122.
    [2] HUSSEINT, PUUSTINEN A, AALTO P P, et al. Urban aerosol number size distributions[J]. Atmospheric Chemistry and Physics, 2004, 4:391-411.
    [3] MENON S, HANSEN J, NAZARENKO L, et al. Climate effects of black carbon aerosols in China and India[J]. Science, 2002, 297:2250-2253.
    [4] NATUSCH D F S, WALLACE J R. Urban aerosol toxicity:The influence of particle Size[J]. Science, 1974, 186(4165):695-699.
    [5] JUNG C H, KIM Y P. Numerical estimation of the effects of condensation and coagulation on visibility using the moment method[J]. Journal of Aerosol Science, 2006, 37(2):143-161.
    [6] BISWASi P, WU C Y. Critical review:Nanoparticles and the environment[J]. J Air Waste Manage Assoc, 2005, 55:708-746.
    [7] HOLMES N S. A review of particle formation events and growth in the atmosphere in the various environments and discussion of mechanistic implications[J]. Atmospheric Environment, 2007, 41(10):2183-2201.
    [8] LI W J, SHAO L Y, WANG Z S, et al. Size, composition, and mixing state of individual aerosol particles in a South China coastal city[J]. Journal of Environmental Sciences, 2010, 22(4):561-569.
    [9] HUSSEIN T. Indoor and outdoor aerosol particle size characterization in Helsinki[J]. Report Series in Aerosol Science, 2005,74:1-53.
    [10] CASTRO A, ALONSO E. Aerosol size distribution in precipitation events in León, Spain[J]. Atmospheric Research, 2010, 96(2):421-435.
    [11] TAKAHASHI H, NAOE H, IGARASHI Y, et al. Aerosol concentrations observed at Mt. Haruna, Japan, in relation to long-range transport of Asian mineral dust aerosols[J]. Atmospheric Environment, 2010, 44(36):4638-4644.
    [12] 赵恒, 王体健, 江飞, 等. 利用后向轨迹模式研究TRACE-P期间香港大气污染物的来源[J]. 热带气象学报, 2009, 25(2):181-186.

    ZHAO H, WANG T J, JIANG F, et al. Investigation into the source of air pollutants to Hong Kong by using backward trajectory method during the TRACE-P campaign[J]. Journal of Tropical Meteorology, 2009, 25(2):181-186(in Chinese).

    [13] 王茜. 利用轨迹模式研究上海大气污染的输送来源[J]. 环境科学研究, 2013, 26(4):357-363.

    WANG Q. Study of air pollution transportation source in Shanghai using trajectory model[J]. Research of Environmental Sciences, 2013, 26(4):357-363(in Chinese).

    [14] 魏桢, 李健军, 王帅, 等. 用后向空气轨迹方法对胶州湾主要大气污染物分布的分析[J]. 中国环境监测, 2013, 33(1):58-63.

    WEI Z, LI J J, WANG S, et al. The application of air trajectory and sector contribution analysis on the distribution of major air pollutants in Jiaozhou Bay[J]. Environmental Monitoring in China, 2013, 33(1):58-63(in Chinese).

    [15] 李瑞芃, 石金辉, 张代洲. 天气条件及气团来源对青岛春季大气颗粒物数浓度谱分布的影响[J]. 中国环境科学, 2012, 32(8):1392-1399.

    LI R P, SHI J H, ZHANG D Z. Size distribution of atmospheric particles in number concentration in relation to meteorological conditions and air mass origins in Qingdao in Spring[J]. China Environmental Science, 2012, 32(8):1392-1399(in Chinese).

    [16] 沈利娟, 李莉, 吕升, 等. 不同气团对嘉兴市大气污染物变化特征的影响[J]. 环境化学, 2015, 34(4):754-762.

    SHEN L J, LI L, LYU S, et al. Impacts of different air masses on the variations of air pollutants in Jiaxing[J]. Environmental Chemistry, 2015, 34(4):754-762(in Chinese).

    [17] WANG H, ZHU B, SHEN L, et al. Number size distribution of aerosols at Mt. Huang and Nanjing in the Yangtze River Delta, China:Effects of air masses and characteristics of new particle formation[J]. Atmospheric Research, 2014, 150:42-56.
    [18] FREUTEL F, SCHNEIDER J, DREWNICK F, et al. Aerosol particle measurements at three stationary sites in the megacity of Paris during summer 2009:Meteorology and air mass origin dominate aerosol particle composition and size distribution[J]. Atmospheric Chemistry and Physics, 2013, 13(2):933-959.
    [19] SOGACHEVA L, DALMASO M, KERMINEN V M, et al. Probability of nucleation events and aerosol particle concentration in different air mass types arriving at Hyytiälä, southern Finland, based on back trajectories analysis[J]. Boreal Environment Research, 2005, 10(6):479-491.
    [20] FU Q, ZUANG G, WANG J, et al. Mechanism of formation of the heaviest pollution episode ever recorded in the Yangtze River Delta, China[J]. Atmospheric Environment, 2008, 42(9):2023-2036.
    [21] WANG H, ZHU B, SHEN L, et al. Water-soluble ions in atmospheric aerosols measured in five sites in the Yangtze River Delta, China:Size-fractionated, seasonal variations and sources[J]. Atmospheric Environment, 2015, doi:10.1016/j.atmosenv.2015.05.070.
    [22] HUANG C, CHEN C H, LI L, et al. Emission inventory of anthropogenic air pollutants and VOC species in the Yangtze River Delta region, China[J]. Atmospheric Chemistry and Physics, 2011, 11(9):4105-4120.
    [23] 王倩, 陈长虹, 王红丽, 等. 上海市秋季大气VOCs对二次有机气溶胶的生成贡献及来源研究[J]. 环境科学, 2013, 34(2):424-433.

    WANG Q, CHEN C H, WANG H L, et al. Forming potential of secondary organic aerosols and sources apportionment of VOCs in autumn of Shanghai, China[J]. Environmental Science, 2013, 34(2):424-433(in Chinese).

    [24] 王广华, 位楠楠, 刘卫, 等. 上海市大气颗粒物中有机碳(OC)与元素碳(EC)的粒径分布[J]. 环境科学, 2010, 31(9):1993-2001.

    WANG G H, WEI N N, LIU W, et al. Size distributions of organic carbon(OC) and element carbon (EC) in Shanghai atmospheric particles[J]. Environmental Science, 2010, 31(9):1993-2001(in Chinese).

    [25] HUANG X F, XUE L, TIAN X D, et al. Highly time-resolved carbonaceous aerosol characterization in Yangtze River Delta of China:Composition, mixing state and secondary formation[J]. Atmospheric Environment, 2013, 64:200-207.
    [26] 刘世玺, 安俊琳, 朱彬, 等. 远距离输送作用对南京大气污染的影响[J]. 生态环境学报, 2010, 19(11):2629-2635.

    LIU S X, AN J L, ZHU B, et al. Influence of the long-distance air masses on atmospheric pollutants in Nanjing city[J]. Ecology and Environmental Sciences, 2010, 19(11):2629-2635(in Chinese).

    [27] 苏彬彬. 华东森林及高山背景区域臭氧变化特征及影响因素[J]. 环境科学, 2013, 34(7):2519-2525.

    SU B B. Characteristics and Impact Factors of O3 Concentrations in Mountain Background Region of East China[J]. Environmental Science, 2013, 34(7):2519-2525(in Chinese).

    [28] 秦彦硕, 刘端阳, 银燕, 等. 南京地区雾水化学特征及污染物来源分[J]. 环境化学, 2011, 30(4):816-824.

    QIN Y S, LIU D Y, YIN Y, et al. Analysis of chemical characteristics in fog water and pollutant source in Nanjing[J]. Environmental Chemistry, 2011, 30(4):816-824(in Chinese).

    [29] DORLING S R, DAVIES T D, PIECE C E. Cluster analysis:A technique for estimating the synoptic meteorological controls on air and precipitation chemistry-method and applications[J]. Atmospheric Environment, 1992, 26(14A):2575-2581.
    [30] DING A, BOY M, VIRKKULA A, et al. Aerosol size distribution and new particle formation in the western Yangtze River Delta of China:2 years of measurements at the SORPES station[J]. Atmospheric Chemistry and Physics, 2015, 15:12445-12464.
  • 加载中
计量
  • 文章访问数:  1061
  • HTML全文浏览数:  1014
  • PDF下载数:  417
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-12-24
  • 刊出日期:  2016-08-15
吕升, 沈利娟, 李莉, 袁婧, 张孝寒, 章国骏, 王翡. 不同气团下嘉兴市春季气溶胶的粒径分布特征[J]. 环境化学, 2016, 35(8): 1715-1722. doi: 10.7524/j.issn.0254-6108.2016.08.2015122403
引用本文: 吕升, 沈利娟, 李莉, 袁婧, 张孝寒, 章国骏, 王翡. 不同气团下嘉兴市春季气溶胶的粒径分布特征[J]. 环境化学, 2016, 35(8): 1715-1722. doi: 10.7524/j.issn.0254-6108.2016.08.2015122403
LYU Sheng, SHEN Lijuan, LI Li, YUAN Jing, ZHANG Xiaohan, ZHANG Guojun, WANG Fei. Aerosol size distribution under different air masses in spring of Jiaxing[J]. Environmental Chemistry, 2016, 35(8): 1715-1722. doi: 10.7524/j.issn.0254-6108.2016.08.2015122403
Citation: LYU Sheng, SHEN Lijuan, LI Li, YUAN Jing, ZHANG Xiaohan, ZHANG Guojun, WANG Fei. Aerosol size distribution under different air masses in spring of Jiaxing[J]. Environmental Chemistry, 2016, 35(8): 1715-1722. doi: 10.7524/j.issn.0254-6108.2016.08.2015122403

不同气团下嘉兴市春季气溶胶的粒径分布特征

  • 1. 嘉兴市环境保护监测站, 嘉兴, 314000
基金项目:

江苏省大气环境监测与污染控制高技术研究重点实验室开放基金(KHK1408),嘉兴市大气细颗粒物(PM2.5)来源解析及控制技术研究(2014AY21012)和江苏高校优势学科建设工程资助项目(PAPD)资助.

摘要: 使用宽范围粒径谱仪(WPS)对嘉兴市2015年5月1-31日10 nm-10 μm的气溶胶粒径分布进行了测定,结合HYSPLIT轨迹模式的气团聚类分型结果,分析了不同类型气团下气溶胶数浓度和表面积浓度的日变化和粒径分布特征.结果表明,观测期间嘉兴市主要受5类气团控制,分别为海洋性气团(Type1,31%)、局地气团(Type2,32%)、西南内陆气团(Type3,25%)、海陆混合气团(Type4,8%)以及西北内陆气团(Type5,4%).气团类型对核模态(10-20 nm)和粗模态(1.0-10 μm)粒子数浓度日变化的影响较大,其次是积聚模态(100-1000 nm)粒子,对爱根核模态(20-100 nm)粒子数浓度日变化的影响较小.不同类型气团下气溶胶数浓度谱分布均为单峰型分布,但是谱分布特征差异较大.不同类型气团下表面积浓度的日变化多为双峰型分布,峰值出现在07:00-09:00和17:00-21:00;气溶胶表面积浓度谱均为三峰型分布,峰值分别位于120-150 nm、500-700 nm和1.2-1.5 μm,Type5气团下的表面积峰值浓度最小,Type3气团下的表面积峰值浓度最大.

English Abstract

参考文献 (30)

返回顶部

目录

/

返回文章
返回