基于植物仿生的土壤重金属污染原位自持修复技术

周建强, 刘晓玲, 韩君, 徐愿坚. 基于植物仿生的土壤重金属污染原位自持修复技术[J]. 环境化学, 2016, 35(7): 1398-1406. doi: 10.7524/j.issn.0254-6108.2016.07.2015112409
引用本文: 周建强, 刘晓玲, 韩君, 徐愿坚. 基于植物仿生的土壤重金属污染原位自持修复技术[J]. 环境化学, 2016, 35(7): 1398-1406. doi: 10.7524/j.issn.0254-6108.2016.07.2015112409
ZHOU Jianqiang, LIU Xiaoling, HAN Jun, XU Yuanjian. Soil heavy metal pollution in situ remediation technique-based on plant evapotranspiration bionic development[J]. Environmental Chemistry, 2016, 35(7): 1398-1406. doi: 10.7524/j.issn.0254-6108.2016.07.2015112409
Citation: ZHOU Jianqiang, LIU Xiaoling, HAN Jun, XU Yuanjian. Soil heavy metal pollution in situ remediation technique-based on plant evapotranspiration bionic development[J]. Environmental Chemistry, 2016, 35(7): 1398-1406. doi: 10.7524/j.issn.0254-6108.2016.07.2015112409

基于植物仿生的土壤重金属污染原位自持修复技术

  • 基金项目:

    重庆市应用开发计划项目(CSTC2014yykfC10004)和重庆市国土局科技计划项目(CQGT-KJ-2015022)资助.

Soil heavy metal pollution in situ remediation technique-based on plant evapotranspiration bionic development

  • Fund Project: Supported by Chongqing Application Development Project(CSTC2014yykfC10004)and Chongqing Land Bureau of Science and Technology project(CQGT-KJ-2015022).
  • 摘要: 采用基于植物仿生的重金属污染土壤原位自持修复技术,研究该方法对重金属污染土壤的修复能力,同时研究活性炭比例、填料装填方式、装置高度和“叶片”材质等4种因素对植物仿生装置修复效率的影响.结果表明,通过植物仿生修复重金属污染土壤中Cr、Ni、Zn和Fe的降低率分别为12.8%、4.1%、27.6%和16.8%,证明了植物仿生修复技术的可行性.活性炭比例、填料装填方式、装置高度和“叶片”材质等4种因素都对植物仿生装置的修复效率存在一定的影响.其中,管件的高度与修复装置蒸发速率呈负相关性,修复装置越高蒸发速率越慢;增加活性炭的量对装置蒸发速率的影响不明显,模拟“叶片”的材料对蒸发速率大小的影响顺序为:玻璃纤维丝>玻璃纤维布>棉纱,蒸发速率分别为:100.1 g·d-1、64.8 g·d-1和61.6 g·d-1.
  • 加载中
  • [1] 骆永明.污染土壤修复技术研究现状与趋势[J]. 化学进展, 2009, 21(2/3):558

    -565. LUO Y M. Current research and development in soil remediation technologies[J]. Progress In Chemistry,2009:21(2/3):558-565(in Chinese).

    [2] 徐磊,周静,崔红标,等.重金属污染土壤的修复与修复效果评价研究进展[J]. 中国农学通报, 2014, 30(20):161-167.

    XU L,ZHOU J,CUI H B, et al. Research progress in remediation and its effect evaluation of heavy metal contaminated soil[J]. Chinese Agricultural Science Bulletin, 2014, 30(20):161-167(in Chinese).

    [3] FRIESL W,Friedl J,Platzer K. Remediation of contaminated agricultural soils deal a former Pb-Zn smelter in Austria:Batch potand field experiments[J]. Environmental Pollution, 2006, 144(1):40-50.
    [4] VAZQUEZ S,AGHA R,GRANADO A. Use of white Lupin plant for phytostabilization of Cd and As polluted acid soil[J]. Water Air and Soil Pollution, 2006, 177:349-365.
    [5] 韩君,徐应明, 温兆飞,等.重庆某废弃电镀工业园农田土壤重金属污染调查与生态风险评价[J]. 环境化学,2014, 33(3):1-8.

    HAN J,XU Y M,WEN Z F, et al. Investigation and ecological risk assessment of heavy metal pollution in agriculture soil of an abandoned electroplating industrial park of Chongqing,China[J]. Environmental Chemistry,2014, 33(3):1-8(in Chinese).

    [6] 崔岩山,陈晓晨.土壤中镉的生物可给性及其对人体的健康风险评估[J]. 环境科学, 2010, 31(2):403-408.

    CUI Y S,CHEN X C.Bioaccessibility of soil cadmium and its health risk assessment[J]. Environmental Science, 2010, 31(2):403-408(in Chinese).

    [7] SEIBERT J J, KUNKEL A M,ELLIOTT L J,et al. Remediation of elemental mercury using in situ thermal desorption(ISTD)[J]. EnvironSci Technol, 2006, 40(7):2384-2389.
    [8] CANADAS I, NAVARRO A,MARTINEZ D, et al. Application of solar thermal desorption to remediation of mercury-contaminated soils[J]. Soil Energy, 2009, 83(8):1405-1414.
    [9] LESTAN D, POCIECHA M. Using electrocoagulation for metal and chelant separation from washing solution after EDTA leaching of Pb, Zn and Cd contaminated soil.[J]. J Hazard Mater, 2010, 174(1-3):670-678.
    [10] LESTAN D, UDOVIC M. Fractionation and bioavailability of Cu in soil remediated by EDTA leaching and processed by earthwor(Lumbricus terrestris L.)[J]. Environ Sci Pollut Res, 2010, 17(3):561-570.
    [11] 韩君,梁学峰,徐应明,等.黏土矿物原位修复镉污染稻田及其对土壤氮磷和酶活性的影响[J]. 环境科学学报, 2014, 34(11):2853-2860.

    HAN J,LIANG X F,XU Y M,et al. In-situ remediation of Cd-polluted paddy soil by clay minerals and their effects on nitrogen phosphorus and enzymatic activities[J]. Acta Scientiae Circumstantiae, 2014, 34(11):2853-2860(in Chinese).

    [12] WEI C FENG R,TU S,et al. Effects of Se on the uptake of essential elements in Pteris vittata L[J]. Plant and Soil, 2009, 325(1-2):123-132.
    [13] 周启星. 污染土壤修复的技术再造与展望[J]. 环境污染治理技术与设备, 2002, 3(8):36-40.

    ZHOU Q X. Technological reforger and prospect of contaminated soil remediation[J].Techniques and Equipment for Environmental pollution Control, 2002, 3(8):36-40(in Chinese).

    [14] TAKESHI KAWACHI,HIROSHI KUBO.Model experimental study on the migration behavior of heavy metals in electrokinetic remediation process for contaminated soil[J].Soil Science & Plant Nutrition,1999,45(2):259-268.
    [15] 黄益宗,郝晓伟,雷鸣,等.重金属污染土壤修复技术及其修复实践[J]. 农业环境科学学报, 2013, 32(3):409-417.

    HUANG Y Z,HAO X W,LEI M,et al. The remediation technology and remediation practice of heavy metals-contaminated soil[J]. Journal of Agro-Environment Science, 2013, 32(3):409-417(in Chinese).

    [16] 韦朝阳,陈同斌.重金属污染植物修复技术的研究与应用现状[J]. 地球科学进展, 2002, 17(6):833-839.

    WEI Z Y,CHEN T B. An pverviewon the status of research and application of heavy metal phytormediatioN[J]. Advance in Earth Sciences,2002, 17(6):833-839(in Chinese).

    [17] 魏树和,周启星,张凯松,等.根际圈在污染土壤修复中的作用与机理分析[J]. 应用生态学报,2003, 14(1):143-147.

    WEI S H,ZHOU Q X,ZHANG K S,et al. Roles of rhizosphere in remediation of contaminated soils and its mechanisms[J]. Chinese Journal of Applied Ecology,2003, 14(1):143-147(in Chinese).

    [18] GLICK B R. Phytoremediation:Synergistic use of plants and bacteria to clean up the environment[J]. Biotechnol Adv, 2003, 21:383-393.
    [19] 马莹,骆永明,滕应,等.内生细菌强化重金属污染土壤植物修复研究进展[J]. 土壤学报, 2013, 50(1):195-202.

    MA Y,LUO Y M,TENG Y,et al. Effects of endophytic bacteria enhancing phytoremediation of heavy metal contaminated soils[J]. ACTA PEDOLOGICA SINICA,2013, 50(1):195-202(in Chinese).

    [20] GUILLON E FLOGEAC K, Aplincourt M Competitive sorption of metal ions onto a north-eastern France soil. Isotherms and XAFS studies[J]. Geoderma 2007, 139:180-189.
    [21] 徐愿坚,韩君,杨舒,等.基于植物仿生的污染土壤原位自持修复装置和方法:中国,201410001839.7[P]. 2014.01.02.
    [22] 吴国辉,刘福娟. 植物的蒸腾作用分析[J]. 农机化研究,2004, 5:287.
    [23] 董泽军. 植物蒸腾作用高速率之原因[J]. 中国农学通报,2010, 26(21):131-135.

    DONG Z J. A primary discussion on high velocity of plant transpiration[J]. Chinese Agricultural Science Bulletin,2010,26(21):131-135(in Chinese).

    [24] 王政友. 土壤水分蒸发的影响因素分析[J]. 山西水利, 2003, 2:26-29.
    [25] 朱健,王平,罗文连,等.硅藻土吸附重金属离子研究现状及进展[J]. 中南林业科技大学学报, 2011, 31(7):183-189.

    ZHU J,WANG P,LUO W L,et al. Present situation and development of adsorption of diatomite for heavy metal ions[J]. Journal of Central South University of Forestry & Technology,2011, 31(7):183-189(in Chinese).

    [26] 林青,徐绍辉. 土壤中重金属离子竞争吸附的研究进展[J]. 土壤, 2008, 40(5):706-711.

    LIN Q,XU S H. A review on competitive adsorption of heavy metals in soils[J]. Soils, 2008, 40(5):706-711(in Chinese).

    [27] HEIDMANN I, CHRISTL I, LEU C, et al. Competitive sorption of protons and metal cations onto kaolinite:Experiments and modeling[J]. Colloid Interf Sci, 2005, 282:270-282.
    [28] 刘继芳,曹翠华,蒋以超,等.重金属离子在土壤中的竞争吸附动力学初步研究.Ⅱ.铜与镉在褐土中竞争吸附动力学[J].土壤肥料, 2000, (30):10-15.
    [29] 黄昌勇,徐建明. 土壤学[M]. 北京:中国农业出版社,2010.09. HUANG C Y,XU J M. Soil Science[M]. Bei Jing:Agriculture Press of China,2010.09(in Chinese).
    [30] ANTONIADIS V, TSADILAS C D, ASHWORTH D J. Monometal and competitive adsorption of heavy metals by sewage sludge-amended soil[J]. Chemosphere, 2007, 68:489-494.
    [31] 王宜鑫,赵斌,汤炎,等. 不同粘土矿物材料对Cd2+的吸附特征[J]. 安全与环境学报, 2007, 7(4):58-60.

    WANG Y X,ZHAO B,TANG Y, et al. Study on the characteristic features of Cd2 adsorption by different clay minerals[J].Journal of safety and Environment, 2007, 7(4):58-60(in Chinese).

    [32] 张金池,姜姜,朱丽珺,等.粘土矿物中重金属离子的吸附规律及竞争吸附[J]. 生态学报, 2007, 27(9):3812-3819.

    ZHANG J C,JIANG J,ZHU L J, et al. Adsorption and competitive adsorption of heavy metal ion by clay mineral[J]. Acta Ecologica Sinica, 2007, 27(9):3812-3819(in Chinese).

    [33] 刘娟娟,梁冬丽,吴小龙,等. Cr(Ⅵ)对两种粘土矿物在单一及复合溶液中Cu(Ⅱ)吸附的影响[J]. 环境科学, 2014, 35(1):254-262.

    LIU J J,LIANG D L,WU X L, et al. Effect of Cr(Ⅵ) Anions on the Cu(Ⅱ) adsorption behavior of two kinds of clay minerals in single and binary solution[J]. Environmental Science, 2014, 35(1):254-262(in Chinese).

  • 加载中
计量
  • 文章访问数:  1729
  • HTML全文浏览数:  1561
  • PDF下载数:  569
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-11-24
  • 刊出日期:  2016-07-15
周建强, 刘晓玲, 韩君, 徐愿坚. 基于植物仿生的土壤重金属污染原位自持修复技术[J]. 环境化学, 2016, 35(7): 1398-1406. doi: 10.7524/j.issn.0254-6108.2016.07.2015112409
引用本文: 周建强, 刘晓玲, 韩君, 徐愿坚. 基于植物仿生的土壤重金属污染原位自持修复技术[J]. 环境化学, 2016, 35(7): 1398-1406. doi: 10.7524/j.issn.0254-6108.2016.07.2015112409
ZHOU Jianqiang, LIU Xiaoling, HAN Jun, XU Yuanjian. Soil heavy metal pollution in situ remediation technique-based on plant evapotranspiration bionic development[J]. Environmental Chemistry, 2016, 35(7): 1398-1406. doi: 10.7524/j.issn.0254-6108.2016.07.2015112409
Citation: ZHOU Jianqiang, LIU Xiaoling, HAN Jun, XU Yuanjian. Soil heavy metal pollution in situ remediation technique-based on plant evapotranspiration bionic development[J]. Environmental Chemistry, 2016, 35(7): 1398-1406. doi: 10.7524/j.issn.0254-6108.2016.07.2015112409

基于植物仿生的土壤重金属污染原位自持修复技术

  • 1.  中国科学院重庆绿色智能技术研究院, 三峡生态环境研究所, 中国科学院水库水环境重点实验室, 重庆, 401122;
  • 2.  中国科学院大学, 北京, 100049;
  • 3.  重庆市中药研究院, 重庆, 400065;
  • 4.  北京新源国能科技集团股份有限公司, 北京, 100016
基金项目:

重庆市应用开发计划项目(CSTC2014yykfC10004)和重庆市国土局科技计划项目(CQGT-KJ-2015022)资助.

摘要: 采用基于植物仿生的重金属污染土壤原位自持修复技术,研究该方法对重金属污染土壤的修复能力,同时研究活性炭比例、填料装填方式、装置高度和“叶片”材质等4种因素对植物仿生装置修复效率的影响.结果表明,通过植物仿生修复重金属污染土壤中Cr、Ni、Zn和Fe的降低率分别为12.8%、4.1%、27.6%和16.8%,证明了植物仿生修复技术的可行性.活性炭比例、填料装填方式、装置高度和“叶片”材质等4种因素都对植物仿生装置的修复效率存在一定的影响.其中,管件的高度与修复装置蒸发速率呈负相关性,修复装置越高蒸发速率越慢;增加活性炭的量对装置蒸发速率的影响不明显,模拟“叶片”的材料对蒸发速率大小的影响顺序为:玻璃纤维丝>玻璃纤维布>棉纱,蒸发速率分别为:100.1 g·d-1、64.8 g·d-1和61.6 g·d-1.

English Abstract

参考文献 (33)

返回顶部

目录

/

返回文章
返回