基于植物仿生的土壤重金属污染原位自持修复技术
Soil heavy metal pollution in situ remediation technique-based on plant evapotranspiration bionic development
-
摘要: 采用基于植物仿生的重金属污染土壤原位自持修复技术,研究该方法对重金属污染土壤的修复能力,同时研究活性炭比例、填料装填方式、装置高度和“叶片”材质等4种因素对植物仿生装置修复效率的影响.结果表明,通过植物仿生修复重金属污染土壤中Cr、Ni、Zn和Fe的降低率分别为12.8%、4.1%、27.6%和16.8%,证明了植物仿生修复技术的可行性.活性炭比例、填料装填方式、装置高度和“叶片”材质等4种因素都对植物仿生装置的修复效率存在一定的影响.其中,管件的高度与修复装置蒸发速率呈负相关性,修复装置越高蒸发速率越慢;增加活性炭的量对装置蒸发速率的影响不明显,模拟“叶片”的材料对蒸发速率大小的影响顺序为:玻璃纤维丝>玻璃纤维布>棉纱,蒸发速率分别为:100.1 g·d-1、64.8 g·d-1和61.6 g·d-1.Abstract: Remediation of heavy metal contaminated soils was studied in this article, using the in situ remediation technique based on phyto-mimic method. Results showed that the reduction rate for heavy metals of Cr, Ni, Zn and Fe were 12.8%, 4.1%, 27.6% and 16.8%, respectively. Four factors including the proportion of activated carbon, the loading mode of filler, the height of the device and the nature of "blade" material were studied regarding the remediation efficiency. The height and the rate of evaporation showed a negative correlation with the remediation device, higher device decreased the evaporation rate. The effect of activated carbon amount on evaporation rate of the device is not obvious.The order of evaporation rate with different "blade" simulating materials was Glass fiber yarn > glass fiber cloth > cotton yarn, and the evaporation rates were 100.1 g·d-1, 64.8 g·d-1 and 61.6 g·d-1, respectively.
-
Key words:
- phyto-mimic /
- transpiration /
- soil /
- heavy metals /
- remediation
-
-
[1] 骆永明.污染土壤修复技术研究现状与趋势[J]. 化学进展, 2009, 21(2/3):558 -565. LUO Y M. Current research and development in soil remediation technologies[J]. Progress In Chemistry,2009:21(2/3):558-565(in Chinese).
[2] 徐磊,周静,崔红标,等.重金属污染土壤的修复与修复效果评价研究进展[J]. 中国农学通报, 2014, 30(20):161-167. XU L,ZHOU J,CUI H B, et al. Research progress in remediation and its effect evaluation of heavy metal contaminated soil[J]. Chinese Agricultural Science Bulletin, 2014, 30(20):161-167(in Chinese).
[3] FRIESL W,Friedl J,Platzer K. Remediation of contaminated agricultural soils deal a former Pb-Zn smelter in Austria:Batch potand field experiments[J]. Environmental Pollution, 2006, 144(1):40-50. [4] VAZQUEZ S,AGHA R,GRANADO A. Use of white Lupin plant for phytostabilization of Cd and As polluted acid soil[J]. Water Air and Soil Pollution, 2006, 177:349-365. [5] 韩君,徐应明, 温兆飞,等.重庆某废弃电镀工业园农田土壤重金属污染调查与生态风险评价[J]. 环境化学,2014, 33(3):1-8. HAN J,XU Y M,WEN Z F, et al. Investigation and ecological risk assessment of heavy metal pollution in agriculture soil of an abandoned electroplating industrial park of Chongqing,China[J]. Environmental Chemistry,2014, 33(3):1-8(in Chinese).
[6] 崔岩山,陈晓晨.土壤中镉的生物可给性及其对人体的健康风险评估[J]. 环境科学, 2010, 31(2):403-408. CUI Y S,CHEN X C.Bioaccessibility of soil cadmium and its health risk assessment[J]. Environmental Science, 2010, 31(2):403-408(in Chinese).
[7] SEIBERT J J, KUNKEL A M,ELLIOTT L J,et al. Remediation of elemental mercury using in situ thermal desorption(ISTD)[J]. EnvironSci Technol, 2006, 40(7):2384-2389. [8] CANADAS I, NAVARRO A,MARTINEZ D, et al. Application of solar thermal desorption to remediation of mercury-contaminated soils[J]. Soil Energy, 2009, 83(8):1405-1414. [9] LESTAN D, POCIECHA M. Using electrocoagulation for metal and chelant separation from washing solution after EDTA leaching of Pb, Zn and Cd contaminated soil.[J]. J Hazard Mater, 2010, 174(1-3):670-678. [10] LESTAN D, UDOVIC M. Fractionation and bioavailability of Cu in soil remediated by EDTA leaching and processed by earthwor(Lumbricus terrestris L.)[J]. Environ Sci Pollut Res, 2010, 17(3):561-570. [11] 韩君,梁学峰,徐应明,等.黏土矿物原位修复镉污染稻田及其对土壤氮磷和酶活性的影响[J]. 环境科学学报, 2014, 34(11):2853-2860. HAN J,LIANG X F,XU Y M,et al. In-situ remediation of Cd-polluted paddy soil by clay minerals and their effects on nitrogen phosphorus and enzymatic activities[J]. Acta Scientiae Circumstantiae, 2014, 34(11):2853-2860(in Chinese).
[12] WEI C FENG R,TU S,et al. Effects of Se on the uptake of essential elements in Pteris vittata L[J]. Plant and Soil, 2009, 325(1-2):123-132. [13] 周启星. 污染土壤修复的技术再造与展望[J]. 环境污染治理技术与设备, 2002, 3(8):36-40. ZHOU Q X. Technological reforger and prospect of contaminated soil remediation[J].Techniques and Equipment for Environmental pollution Control, 2002, 3(8):36-40(in Chinese).
[14] TAKESHI KAWACHI,HIROSHI KUBO.Model experimental study on the migration behavior of heavy metals in electrokinetic remediation process for contaminated soil[J].Soil Science & Plant Nutrition,1999,45(2):259-268. [15] 黄益宗,郝晓伟,雷鸣,等.重金属污染土壤修复技术及其修复实践[J]. 农业环境科学学报, 2013, 32(3):409-417. HUANG Y Z,HAO X W,LEI M,et al. The remediation technology and remediation practice of heavy metals-contaminated soil[J]. Journal of Agro-Environment Science, 2013, 32(3):409-417(in Chinese).
[16] 韦朝阳,陈同斌.重金属污染植物修复技术的研究与应用现状[J]. 地球科学进展, 2002, 17(6):833-839. WEI Z Y,CHEN T B. An pverviewon the status of research and application of heavy metal phytormediatioN[J]. Advance in Earth Sciences,2002, 17(6):833-839(in Chinese).
[17] 魏树和,周启星,张凯松,等.根际圈在污染土壤修复中的作用与机理分析[J]. 应用生态学报,2003, 14(1):143-147. WEI S H,ZHOU Q X,ZHANG K S,et al. Roles of rhizosphere in remediation of contaminated soils and its mechanisms[J]. Chinese Journal of Applied Ecology,2003, 14(1):143-147(in Chinese).
[18] GLICK B R. Phytoremediation:Synergistic use of plants and bacteria to clean up the environment[J]. Biotechnol Adv, 2003, 21:383-393. [19] 马莹,骆永明,滕应,等.内生细菌强化重金属污染土壤植物修复研究进展[J]. 土壤学报, 2013, 50(1):195-202. MA Y,LUO Y M,TENG Y,et al. Effects of endophytic bacteria enhancing phytoremediation of heavy metal contaminated soils[J]. ACTA PEDOLOGICA SINICA,2013, 50(1):195-202(in Chinese).
[20] GUILLON E FLOGEAC K, Aplincourt M Competitive sorption of metal ions onto a north-eastern France soil. Isotherms and XAFS studies[J]. Geoderma 2007, 139:180-189. [21] 徐愿坚,韩君,杨舒,等.基于植物仿生的污染土壤原位自持修复装置和方法:中国,201410001839.7[P]. 2014.01.02. [22] 吴国辉,刘福娟. 植物的蒸腾作用分析[J]. 农机化研究,2004, 5:287. [23] 董泽军. 植物蒸腾作用高速率之原因[J]. 中国农学通报,2010, 26(21):131-135. DONG Z J. A primary discussion on high velocity of plant transpiration[J]. Chinese Agricultural Science Bulletin,2010,26(21):131-135(in Chinese).
[24] 王政友. 土壤水分蒸发的影响因素分析[J]. 山西水利, 2003, 2:26-29. [25] 朱健,王平,罗文连,等.硅藻土吸附重金属离子研究现状及进展[J]. 中南林业科技大学学报, 2011, 31(7):183-189. ZHU J,WANG P,LUO W L,et al. Present situation and development of adsorption of diatomite for heavy metal ions[J]. Journal of Central South University of Forestry & Technology,2011, 31(7):183-189(in Chinese).
[26] 林青,徐绍辉. 土壤中重金属离子竞争吸附的研究进展[J]. 土壤, 2008, 40(5):706-711. LIN Q,XU S H. A review on competitive adsorption of heavy metals in soils[J]. Soils, 2008, 40(5):706-711(in Chinese).
[27] HEIDMANN I, CHRISTL I, LEU C, et al. Competitive sorption of protons and metal cations onto kaolinite:Experiments and modeling[J]. Colloid Interf Sci, 2005, 282:270-282. [28] 刘继芳,曹翠华,蒋以超,等.重金属离子在土壤中的竞争吸附动力学初步研究.Ⅱ.铜与镉在褐土中竞争吸附动力学[J].土壤肥料, 2000, (30):10-15. [29] 黄昌勇,徐建明. 土壤学[M]. 北京:中国农业出版社,2010.09. HUANG C Y,XU J M. Soil Science[M]. Bei Jing:Agriculture Press of China,2010.09(in Chinese). [30] ANTONIADIS V, TSADILAS C D, ASHWORTH D J. Monometal and competitive adsorption of heavy metals by sewage sludge-amended soil[J]. Chemosphere, 2007, 68:489-494. [31] 王宜鑫,赵斌,汤炎,等. 不同粘土矿物材料对Cd2+的吸附特征[J]. 安全与环境学报, 2007, 7(4):58-60. WANG Y X,ZHAO B,TANG Y, et al. Study on the characteristic features of Cd2 adsorption by different clay minerals[J].Journal of safety and Environment, 2007, 7(4):58-60(in Chinese).
[32] 张金池,姜姜,朱丽珺,等.粘土矿物中重金属离子的吸附规律及竞争吸附[J]. 生态学报, 2007, 27(9):3812-3819. ZHANG J C,JIANG J,ZHU L J, et al. Adsorption and competitive adsorption of heavy metal ion by clay mineral[J]. Acta Ecologica Sinica, 2007, 27(9):3812-3819(in Chinese).
[33] 刘娟娟,梁冬丽,吴小龙,等. Cr(Ⅵ)对两种粘土矿物在单一及复合溶液中Cu(Ⅱ)吸附的影响[J]. 环境科学, 2014, 35(1):254-262. LIU J J,LIANG D L,WU X L, et al. Effect of Cr(Ⅵ) Anions on the Cu(Ⅱ) adsorption behavior of two kinds of clay minerals in single and binary solution[J]. Environmental Science, 2014, 35(1):254-262(in Chinese).
-

计量
- 文章访问数: 1729
- HTML全文浏览数: 1561
- PDF下载数: 569
- 施引文献: 0