邻苯二酚-Fe2O3和邻苯二酚-CuO体系中持久性自由基的形成机制及特征

王婷, 李浩, 郭惠莹, 程正奇, 潘波. 邻苯二酚-Fe2O3和邻苯二酚-CuO体系中持久性自由基的形成机制及特征[J]. 环境化学, 2016, 35(3): 423-429. doi: 10.7524/j.issn.0254-6108.2016.03.2015092405
引用本文: 王婷, 李浩, 郭惠莹, 程正奇, 潘波. 邻苯二酚-Fe2O3和邻苯二酚-CuO体系中持久性自由基的形成机制及特征[J]. 环境化学, 2016, 35(3): 423-429. doi: 10.7524/j.issn.0254-6108.2016.03.2015092405
WANG Ting, LI Hao, GUO Huiying, CHENG Zhengqi, PAN Bo. The formation and characteristics of persistent free radicals in catechol-Fe2O3/silica and catechol-CuO/silica systems[J]. Environmental Chemistry, 2016, 35(3): 423-429. doi: 10.7524/j.issn.0254-6108.2016.03.2015092405
Citation: WANG Ting, LI Hao, GUO Huiying, CHENG Zhengqi, PAN Bo. The formation and characteristics of persistent free radicals in catechol-Fe2O3/silica and catechol-CuO/silica systems[J]. Environmental Chemistry, 2016, 35(3): 423-429. doi: 10.7524/j.issn.0254-6108.2016.03.2015092405

邻苯二酚-Fe2O3和邻苯二酚-CuO体系中持久性自由基的形成机制及特征

  • 基金项目:

    国家自然科学基金(41222025,41273138)资助.

The formation and characteristics of persistent free radicals in catechol-Fe2O3/silica and catechol-CuO/silica systems

  • Fund Project: Supported by the National Natural Science Foundation of China(41222025, 41273138).
  • 摘要: 以SiO2为载体模拟固体土壤环境,研究了邻苯二酚(CT)-Fe2O3/SiO2和CT-CuO/SiO2体系中持久性自由基(PFRs)的形成机制、特征及其对邻苯二酚降解的影响.实验发现,相对于CT-SiO2体系,CT-Fe2O3/SiO2和CT-CuO/SiO2体系中邻苯二酚和过渡金属相互作用,还原后的过渡金属与自由基结合形成了以半醌自由基为主的更稳定的PFRs,其g值为2.0040-2.0055.在较低浓度时,这种PFRs阻碍了CT的降解,改变了其环境行为,增大了其环境风险.
  • 加载中
  • [1] 杨颖, 孙振亚. 一类新的环境有害物质——环境持久性自由基(EPFRs)的研究进展[J]. 矿物岩石地球化学通报, 2012, 31(3):287-290.

    YANG Y, SUN Z Y. The research progress on a new type harmful matter-environmental persistent free radicals (EPFRs)[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2012, 31(3):287-290(in Chinese).

    [2] 郭颖. 固废处置中持久性自由基/二恶英的排放特性及检测研究[D]. 浙江:浙江大学, 2014. GUO Y. Study on emission characteristics and detection of PCDD/Fs and environment persistent free radicals during solid waste disposal[D]. Zhejiang:Zhejiang University, 2014(in Chinese).
    [3] LOMNICKI S, TRUONG H, VEJERANO E, et al. Copper oxide-based model of persistent free radical formation on combustion-derived particulate matter[J]. Environmental Science & Technology, 2008, 42(13):4982-4988.
    [4] VEJERANO E, LOMNICKI S, DELLINGER B. Formation and stabilization of combustion-generated environmentally persistent free radicals on an Fe(Ⅲ)2O3/silica surface[J]. Environmental Science & Technology, 2011, 45(2):589-594.
    [5] MCFERRIN C A, HALL R W, DELLINGER B. AB initio study of the formation and degradation reactions of semiquinone and phenoxyl radicals[J]. Journal of Molecular Structure-Theochem, 2008, 848(1/3):16-23.
    [6] VEJERANO E, LOMNICKI S M, DELLINGER B. Formation and stabilization of combustion-generated, environmentally persistent radicals on Ni(Ⅱ)O supported on a silica surface[J]. Environmental Science & Technology, 2012, 46(17):9406-9411.
    [7] DELLINGER B, LOMNICKI S, KHACHATRYAN L, et al. Formation and stabilization of persistent free radicals[J]. Proceedings of the Combustion Institute, 2007, 31(1):521-528.
    [8] GEHLING W, DELLINGER B. Environmentally persistent free radicals and their lifetimes in PM2.5[J]. Environmental Science & Technology, 2013, 47(15):8172-8178.
    [9] MASKOS Z, DELLINGER B. Radicals from the oxidative pyrolysis of tobacco[J]. Energy & Fuels, 2008, 22(3):1675-1679.
    [10] DELLINGER B, PRYOR W A, CUETO R, et al. Role of free radicals in the toxicity of airborne fine particulate matter[J]. Chemical Research in Toxicology, 2001, 14(10):1371-1377.
    [11] DELA CRUZ A L N, GEHLING W, LOMNICKI S, et al. Detection of environmentally persistent free radicals at a superfund wood treating site[J]. Environmental Science & Technology, 2011, 45(15):6356-6365.
    [12] JEZIERSKI A, CZECHOWSKI F, JERZYKIEWICZ M, et al. EPR investigations of structure of humic acids from compost, soil, peat and soft brown coal upon oxidation and metal uptake[J]. Applied Magnetic Resonance, 2000, 18(1):127-136.
    [13] 何洁, 杨晓芳, 张伟军, 等. 纳米Fe3O4-H2O2非均相Fenton反应催化氧化邻苯二酚[J]. 环境科学, 2013, 34(5):1773-1781.

    HE J, YANG X F, ZHANG W J, et al. Catalyzed oxidation of catechol by the heterogeneous fenton-like reaction of nano-Fe3O4-H2O2 System[J]. Environmental Science, 2013, 34(5):1773-1781(in Chinese).

    [14] LI H, PAN B, LIAO S H. Formation of environmentally persistent free radicals as the mechanism for reduced catechol degradation on hematite-silica surface under UV irradiation[J]. Environmental Pollution, 2014, 188, 153-158.
    [15] KAMAU P, JORDAN R B. Kinetic study of the oxidation of catechol by aqueous copper (Ⅱ)[J]. Inorganic Chemistry, 2002, 41(12):3076-3083.
    [16] JEZIERSKI A, CZECHOWSKI F, JERZYKIEWICZ M, et al. Quantitative EPR study on free radicals in the natural polyphenols interacting with metal ions and other environmental pollutants[J]. Spectrochimica Acta. Part A-Molecular and Biomolecular Spectroscopy, 2002, 58(6):1293-1300.
    [17] 张雷, 廖代正, 姜宗慧, 等. 半醌自由基金属配合物——一种新型的分子材料[J]. 化学通报, 2000, 63(3):27-31.

    ZHANG L, LIAO D Z, JIANG Z H, et al. A new molecular material-semiquinone radicals and metal compounds[J]. Chemistry, 2000, 63(3):27-31(in Chinese).

    [18] 裘祖文. 电子自旋共振波谱(第一版)[M]. 北京:科学出版社, 1980:21-22. QIU Z W. Electron spin resonance[M]. Beijing:Science Press,1980:21

    -22(in Chinese).

    [19] 卢超, 郑祥民, 周立旻, 等. 城市大气颗粒物表面半醌自由基的测定及特征分析[J]. 环境化学, 2013, 32(1):1-6.

    LU C, ZHENG X M, ZHOU L Y, et al. Measurements and characteristics of semiquinone radicals in urban atmospheric particles[J]. Environmental Chemistry, 2013, 32(1):1-6(in Chinese).

    [20] VEJERANO E, LOMNICKI S, DELLINGER B. Lifetime of combustion-generated environmentally persistent free radicals on Zn(Ⅱ)O and other transition metal oxides[J]. Journal of Environmental Monitoring, 2012, 14(10):2803-2806.
    [21] KHACHATRYAN L, ADOUNKPE J, ASATRYAN R, et al. Radicals from the Gas-Phase pyrolysis of catechol:1. o-semiquinone and ipso-catechol radicals[J]. Journal of Physical Chemistry A, 2010, 114(6):2306-2312.
    [22] KIRURI L W, DELLINGER B, LOMNICKI S. Tar balls from deep water horizon oil spill:environmentally persistent free radicals (EPFR) formation during crude weathering[J]. Environmental Science & Technology, 2013, 47(9):4220-4226.
    [23] BOYD S A, MORTLAND M M. Dioxin radical formation and polymerizationonCu(Ⅱ)-smectite[J]. Nature, 1985, 316(6028):532-535.
    [24] WANG Z L, LIU Q S, YU J F, et al. Surface structure and catalytic behavior of silica-supported copper catalysts prepared by impregnation and sol-gel methods[J]. Applied Catalysis A-General, 2003, 239(1/2):87-94.
    [25] PIGNATELLO J J, OLIVEROS E, MACKAY A. Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry[J]. Critical Reviews in Environmental Science & Technology, 2006, 36(1):1-84.
    [26] KUKIER U, ISHAK C F, SUMNER M E, et al. Composition and element solubility of magnetic and non-magnetic fly ash fractions[J]. Environmental Pollution, 2003, 123(2):255-266.
  • 加载中
计量
  • 文章访问数:  1755
  • HTML全文浏览数:  1610
  • PDF下载数:  916
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-09-24
  • 刊出日期:  2016-03-15
王婷, 李浩, 郭惠莹, 程正奇, 潘波. 邻苯二酚-Fe2O3和邻苯二酚-CuO体系中持久性自由基的形成机制及特征[J]. 环境化学, 2016, 35(3): 423-429. doi: 10.7524/j.issn.0254-6108.2016.03.2015092405
引用本文: 王婷, 李浩, 郭惠莹, 程正奇, 潘波. 邻苯二酚-Fe2O3和邻苯二酚-CuO体系中持久性自由基的形成机制及特征[J]. 环境化学, 2016, 35(3): 423-429. doi: 10.7524/j.issn.0254-6108.2016.03.2015092405
WANG Ting, LI Hao, GUO Huiying, CHENG Zhengqi, PAN Bo. The formation and characteristics of persistent free radicals in catechol-Fe2O3/silica and catechol-CuO/silica systems[J]. Environmental Chemistry, 2016, 35(3): 423-429. doi: 10.7524/j.issn.0254-6108.2016.03.2015092405
Citation: WANG Ting, LI Hao, GUO Huiying, CHENG Zhengqi, PAN Bo. The formation and characteristics of persistent free radicals in catechol-Fe2O3/silica and catechol-CuO/silica systems[J]. Environmental Chemistry, 2016, 35(3): 423-429. doi: 10.7524/j.issn.0254-6108.2016.03.2015092405

邻苯二酚-Fe2O3和邻苯二酚-CuO体系中持久性自由基的形成机制及特征

  • 1. 昆明理工大学, 环境科学与工程学院, 昆明, 650500
基金项目:

国家自然科学基金(41222025,41273138)资助.

摘要: 以SiO2为载体模拟固体土壤环境,研究了邻苯二酚(CT)-Fe2O3/SiO2和CT-CuO/SiO2体系中持久性自由基(PFRs)的形成机制、特征及其对邻苯二酚降解的影响.实验发现,相对于CT-SiO2体系,CT-Fe2O3/SiO2和CT-CuO/SiO2体系中邻苯二酚和过渡金属相互作用,还原后的过渡金属与自由基结合形成了以半醌自由基为主的更稳定的PFRs,其g值为2.0040-2.0055.在较低浓度时,这种PFRs阻碍了CT的降解,改变了其环境行为,增大了其环境风险.

English Abstract

参考文献 (26)

返回顶部

目录

/

返回文章
返回