邻苯二酚-Fe2O3和邻苯二酚-CuO体系中持久性自由基的形成机制及特征
The formation and characteristics of persistent free radicals in catechol-Fe2O3/silica and catechol-CuO/silica systems
-
摘要: 以SiO2为载体模拟固体土壤环境,研究了邻苯二酚(CT)-Fe2O3/SiO2和CT-CuO/SiO2体系中持久性自由基(PFRs)的形成机制、特征及其对邻苯二酚降解的影响.实验发现,相对于CT-SiO2体系,CT-Fe2O3/SiO2和CT-CuO/SiO2体系中邻苯二酚和过渡金属相互作用,还原后的过渡金属与自由基结合形成了以半醌自由基为主的更稳定的PFRs,其g值为2.0040-2.0055.在较低浓度时,这种PFRs阻碍了CT的降解,改变了其环境行为,增大了其环境风险.Abstract: This work studied the formation mechanism and characteristics of PFRs in the system of catechol(CT)-Fe2O3/SiO2 and CT-CuO/SiO2. Importantly, the impact of PFRs on CT degradation was investigated. Compared to CT-SiO2 particles, more stable PFRs were observed during the interaction between CT and transition metal on the surface of 1% Fe2O3/SiO2 or 1% CuO/SiO2 particles. These PFRs are mostly semiquinone free radicals with a g factor of 2.0040-2.0055. The generation of Fe(Ⅱ)-PFRs or Cu(Ⅰ)-PFRs decreased the degradation of CT in the lower concentration and thus might alter CT environmental behavior and increase its environmental risk.
-
Key words:
- persistent free radicals /
- g factor /
- catechol /
- photodegradatio
-
-
[1] 杨颖, 孙振亚. 一类新的环境有害物质——环境持久性自由基(EPFRs)的研究进展[J]. 矿物岩石地球化学通报, 2012, 31(3):287-290. YANG Y, SUN Z Y. The research progress on a new type harmful matter-environmental persistent free radicals (EPFRs)[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2012, 31(3):287-290(in Chinese).
[2] 郭颖. 固废处置中持久性自由基/二恶英的排放特性及检测研究[D]. 浙江:浙江大学, 2014. GUO Y. Study on emission characteristics and detection of PCDD/Fs and environment persistent free radicals during solid waste disposal[D]. Zhejiang:Zhejiang University, 2014(in Chinese). [3] LOMNICKI S, TRUONG H, VEJERANO E, et al. Copper oxide-based model of persistent free radical formation on combustion-derived particulate matter[J]. Environmental Science & Technology, 2008, 42(13):4982-4988. [4] VEJERANO E, LOMNICKI S, DELLINGER B. Formation and stabilization of combustion-generated environmentally persistent free radicals on an Fe(Ⅲ)2O3/silica surface[J]. Environmental Science & Technology, 2011, 45(2):589-594. [5] MCFERRIN C A, HALL R W, DELLINGER B. AB initio study of the formation and degradation reactions of semiquinone and phenoxyl radicals[J]. Journal of Molecular Structure-Theochem, 2008, 848(1/3):16-23. [6] VEJERANO E, LOMNICKI S M, DELLINGER B. Formation and stabilization of combustion-generated, environmentally persistent radicals on Ni(Ⅱ)O supported on a silica surface[J]. Environmental Science & Technology, 2012, 46(17):9406-9411. [7] DELLINGER B, LOMNICKI S, KHACHATRYAN L, et al. Formation and stabilization of persistent free radicals[J]. Proceedings of the Combustion Institute, 2007, 31(1):521-528. [8] GEHLING W, DELLINGER B. Environmentally persistent free radicals and their lifetimes in PM2.5[J]. Environmental Science & Technology, 2013, 47(15):8172-8178. [9] MASKOS Z, DELLINGER B. Radicals from the oxidative pyrolysis of tobacco[J]. Energy & Fuels, 2008, 22(3):1675-1679. [10] DELLINGER B, PRYOR W A, CUETO R, et al. Role of free radicals in the toxicity of airborne fine particulate matter[J]. Chemical Research in Toxicology, 2001, 14(10):1371-1377. [11] DELA CRUZ A L N, GEHLING W, LOMNICKI S, et al. Detection of environmentally persistent free radicals at a superfund wood treating site[J]. Environmental Science & Technology, 2011, 45(15):6356-6365. [12] JEZIERSKI A, CZECHOWSKI F, JERZYKIEWICZ M, et al. EPR investigations of structure of humic acids from compost, soil, peat and soft brown coal upon oxidation and metal uptake[J]. Applied Magnetic Resonance, 2000, 18(1):127-136. [13] 何洁, 杨晓芳, 张伟军, 等. 纳米Fe3O4-H2O2非均相Fenton反应催化氧化邻苯二酚[J]. 环境科学, 2013, 34(5):1773-1781. HE J, YANG X F, ZHANG W J, et al. Catalyzed oxidation of catechol by the heterogeneous fenton-like reaction of nano-Fe3O4-H2O2 System[J]. Environmental Science, 2013, 34(5):1773-1781(in Chinese).
[14] LI H, PAN B, LIAO S H. Formation of environmentally persistent free radicals as the mechanism for reduced catechol degradation on hematite-silica surface under UV irradiation[J]. Environmental Pollution, 2014, 188, 153-158. [15] KAMAU P, JORDAN R B. Kinetic study of the oxidation of catechol by aqueous copper (Ⅱ)[J]. Inorganic Chemistry, 2002, 41(12):3076-3083. [16] JEZIERSKI A, CZECHOWSKI F, JERZYKIEWICZ M, et al. Quantitative EPR study on free radicals in the natural polyphenols interacting with metal ions and other environmental pollutants[J]. Spectrochimica Acta. Part A-Molecular and Biomolecular Spectroscopy, 2002, 58(6):1293-1300. [17] 张雷, 廖代正, 姜宗慧, 等. 半醌自由基金属配合物——一种新型的分子材料[J]. 化学通报, 2000, 63(3):27-31. ZHANG L, LIAO D Z, JIANG Z H, et al. A new molecular material-semiquinone radicals and metal compounds[J]. Chemistry, 2000, 63(3):27-31(in Chinese).
[18] 裘祖文. 电子自旋共振波谱(第一版)[M]. 北京:科学出版社, 1980:21-22. QIU Z W. Electron spin resonance[M]. Beijing:Science Press,1980:21 -22(in Chinese).
[19] 卢超, 郑祥民, 周立旻, 等. 城市大气颗粒物表面半醌自由基的测定及特征分析[J]. 环境化学, 2013, 32(1):1-6. LU C, ZHENG X M, ZHOU L Y, et al. Measurements and characteristics of semiquinone radicals in urban atmospheric particles[J]. Environmental Chemistry, 2013, 32(1):1-6(in Chinese).
[20] VEJERANO E, LOMNICKI S, DELLINGER B. Lifetime of combustion-generated environmentally persistent free radicals on Zn(Ⅱ)O and other transition metal oxides[J]. Journal of Environmental Monitoring, 2012, 14(10):2803-2806. [21] KHACHATRYAN L, ADOUNKPE J, ASATRYAN R, et al. Radicals from the Gas-Phase pyrolysis of catechol:1. o-semiquinone and ipso-catechol radicals[J]. Journal of Physical Chemistry A, 2010, 114(6):2306-2312. [22] KIRURI L W, DELLINGER B, LOMNICKI S. Tar balls from deep water horizon oil spill:environmentally persistent free radicals (EPFR) formation during crude weathering[J]. Environmental Science & Technology, 2013, 47(9):4220-4226. [23] BOYD S A, MORTLAND M M. Dioxin radical formation and polymerizationonCu(Ⅱ)-smectite[J]. Nature, 1985, 316(6028):532-535. [24] WANG Z L, LIU Q S, YU J F, et al. Surface structure and catalytic behavior of silica-supported copper catalysts prepared by impregnation and sol-gel methods[J]. Applied Catalysis A-General, 2003, 239(1/2):87-94. [25] PIGNATELLO J J, OLIVEROS E, MACKAY A. Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry[J]. Critical Reviews in Environmental Science & Technology, 2006, 36(1):1-84. [26] KUKIER U, ISHAK C F, SUMNER M E, et al. Composition and element solubility of magnetic and non-magnetic fly ash fractions[J]. Environmental Pollution, 2003, 123(2):255-266. -

计量
- 文章访问数: 1755
- HTML全文浏览数: 1610
- PDF下载数: 916
- 施引文献: 0