大气颗粒物中生物质燃烧示踪化合物的研究进展

王鑫彤, 鞠法帅, 韩德文, 陈奇, 汪午. 大气颗粒物中生物质燃烧示踪化合物的研究进展[J]. 环境化学, 2015, 34(10): 1885-1894. doi: 10.7524/j.issn.0254-6108.2015.10.2015040704
引用本文: 王鑫彤, 鞠法帅, 韩德文, 陈奇, 汪午. 大气颗粒物中生物质燃烧示踪化合物的研究进展[J]. 环境化学, 2015, 34(10): 1885-1894. doi: 10.7524/j.issn.0254-6108.2015.10.2015040704
WANG Xintong, JU Fashuai, HAN Dewen, CHEN Qi, WANG Wu. Research progress on the organic tracers of biomass burning in atmospheric aerosols[J]. Environmental Chemistry, 2015, 34(10): 1885-1894. doi: 10.7524/j.issn.0254-6108.2015.10.2015040704
Citation: WANG Xintong, JU Fashuai, HAN Dewen, CHEN Qi, WANG Wu. Research progress on the organic tracers of biomass burning in atmospheric aerosols[J]. Environmental Chemistry, 2015, 34(10): 1885-1894. doi: 10.7524/j.issn.0254-6108.2015.10.2015040704

大气颗粒物中生物质燃烧示踪化合物的研究进展

  • 基金项目:

    国家自然科学基金(20877051, 21377078)

    国家留学基金委公派留学基金资助.

Research progress on the organic tracers of biomass burning in atmospheric aerosols

  • Fund Project:
  • 摘要: 生物质燃烧是大气颗粒物的重要来源.钾离子、脱水糖类(左旋葡聚糖、甘露聚糖、半乳聚糖)、脱氢松香酸等被认为是示踪生物质燃烧的主要化合物. 其中, 脱水糖类由于其良好的化学稳定性和较高的浓度水平, 被广泛用作有关生物质燃烧的检测和估算其对大气颗粒物贡献的代表性化合物. 研究发现, 大气颗粒物中脱水糖类的含量随季节不同而呈现差异;不同类型的生物质经燃烧后产生的气溶胶颗粒物中, 主要示踪化合物的组成比例不同. 如软木燃烧后的左旋葡聚糖/甘露聚糖比值约为4.3、硬木约为23.1、农作物残渣约为32.0. 利用这一特性可以分析大气颗粒物中不同生物质燃烧源的类型和所占比例等. 气相色谱-质谱联用技术是检测大气颗粒物中脱水糖类有机示踪物的主要手段. 该法需要对样品进行前处理. 高效液相色谱-质谱联用技术和高效阴离子交换色谱-脉冲安培检测法可以很好地替代气相色谱质谱联用法, 避免样品的前处理和衍生化反应, 但检测范围较窄. 几种方法各有利弊, 需根据样品的来源和实验目标选择适当的分析方法.
  • 加载中
  • [1] Krumal K, Mikuska P, Vojtesek M, et al. Seasonal variations of monosaccharide anhydrides in PM1 and PM2.5 aerosol in urban areas[J]. Atmospheric Environment, 2010, 44(39): 5148-5155
    [2] 李兴华, 王书肖, 郝吉明. 民用生物质燃烧挥发性有机化合物排放特征[J]. 环境科学, 2011, 32(12): 3515-3521
    [3] Alves C A, Goncalves C, Evtyugina M, et al. Particulate organic compounds emitted from experimental wildland fires in a Mediterranean ecosystem[J]. Atmospheric Environment, 2010, 44(23): 2750-2759
    [4] Reisen F, Meyer C P, McCaw L, et al. Impact of smoke from biomass burning on air quality in rural communities in southern Australia[J]. Atmospheric Environment, 2011, 45(24): 3944-3953
    [5] Fisseha R, Spahn H, Wegener R, et al. Stable carbon isotope composition of secondary organic aerosol from β-pinene oxidation[J]. Journal of Geophysical Research, 2009, 114, D02304: 1-8
    [6] Ito A, Penner J E. Historical emissions of carbonaceous aerosols from biomass and fossil fuel burning for the period 1870-2000[J]. Global Biogeochemical Cycles, 2005, 19(2): 273-280
    [7] Bond T C, Streets D G, Yarber K F, et al. A technology-based global inventory of black and organic carbon emissions from combustion[J]. Journal of Geophysical Research-Atmospheres, 2004, 109(D14): 1149-1165
    [8] Wang W, Maenhaut W, Yang W, et al. One-year aerosol characterization study for PM2.5 and PM10 in Beijing[J]. Atmospheric Pollution Reseearch, 2014, 5: 554-562
    [9] Cheng Y, Engling G, He K B, et al. Biomass burning contribution to Beijing aerosol[J]. Atmospheric Chemistry and Physics, 2013, 13(15): 7765-7781
    [10] Lu Z, Zhang Q, Streets D G. Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996-2010[J]. Atmospheric Chemistry and Physics, 2011, 11(18): 9839-9864
    [11] Li L J, Wang Y, Zhang Q, et al. Wheat straw burning and its associated impacts on Beijing air quality[J]. Science in China Series D: Earth Sciences, 2008, 51(3): 403-414
    [12] 唐喜斌, 黄成, 楼晟荣, 等. 长三角地区秸秆燃烧排放因子与颗粒物成分谱研究[J]. 环境科学, 2014, 35(5): 1623-1632
    [13] Jung J, Lee S, Kim H, et al. Quantitative determination of the biomass-burning contribution to atmospheric carbonaceous aerosols in Daejeon, Korea, during the rice-harvest period[J]. Atmospheric Environment, 2014, 89(2): 642-650
    [14] Simoneit B R T. Organic matter of the troposphere: Ⅲ-characterization sources of petroleum and pyrogenic residues in aerosols over the Western United States[J]. Atmospheric Environment, 1984, 18: 51-67
    [15] Otto A, Simoneit B R T. Chemosystematics and diagenesis of terpenoids in fossil conifer species and sediment from the Eocene Zeitz formation, Saxony, Germany[J]. Geochimica et Cosmochimica Acta, 2001, 65(20): 3505-3527
    [16] Oros D R, Simoneit B R T. Identification and emission factors of molecular tracers in organic aerosols from biomass burning: Part 1. Temperate climate conifers[J]. Applied Geochemistry, 2001, 16(13): 1513-1544
    [17] Otto A, Simoneit B R T. Biomarkers of Holocene buried conifer logs from Bella Coola and north Vancouver, British Columbia, Canada[J]. Organic Geochemistry, 2002, 33(11): 1241-1251
    [18] Oros D R, Simoneit B R T. Identification and emission factors of molecular tracers in organic aerosols from biomass burning: Part 2. Deciduous trees[J]. Applied Geochemistry, 2001, 16(13): 1545-1565
    [19] Yamamoto S, Otto A, Krumbiegel G, et al. The natural product biomarkers in succinite, glessite and stantienite ambers from Bitterfeld, Germany[J]. Review of Palaeobotany and Palynology, 2006, 140(1): 27-49
    [20] Hennigan C J, Sullivan A P, Collett Jr J L, et al. Levoglucosan stability in biomass burning particles exposed to hydroxyl radicals[J]. Geophysical Research Letters, 2010, 37(9): 232-256
    [21] Hoffmann D, Tilgner A, Iinuma Y, et al. Atmospheric stability of levoglucosan: A detailed laboratory and modeling study[J]. Environmental Science & Technology, 2010, 44(2): 694-699
    [22] Schkolnik G, Rudich Y. Detection and quantification of levoglucosan in atmospheric aerosols: A review [J]. Analytical and Bioanalytical Chemistry, 2006, 385(1): 26-33
    [23] Simoneit B R T, Rogge W F, Lang Q, et al. Molecular characterization of smoke from camp fire burning of pine wood (Pinus elliottii) [J]. Chemosphere, 2000, 2(99): 107-122
    [24] Engling G, Lee J J, Tsai Y W, et al. Size-resolved anhydrosugar composition in smoke aerosol from controlled field burning of rice straw[J]. Aerosol Science and Technology, 2009, 43(7): 662-672
    [25] Simoneit B R T, Rushdi A I, Binabas M R, et al. Alkyl Amides and Nitriles as novel tracers for biomass burning[J]. Environmental Science & Technology, 2003, 37(1): 16-21
    [26] Simoneit B R T. Biomass burning-a review of organic tracers for smoke from incomplete combustion[J]. Applied Geochemistry, 2002, 17: 129-162
    [27] Bergauff M, Ward T, Noonan C, et al. Determination and evaluation of selected organic chemical tracers for wood smoke in airborne particulate matter[J]. International Journal of Environmental Analytical Chemistry, 2008, 88(7): 473-486
    [28] Simoneit B R T, Elias V O. Detecting organic tracers from biomass burning in the atmosphere[J]. Marine Pollution Bulletin, 2001, 42(10): 805-810
    [29] Chen J, Kawamura K, Liu C Q, et al. Long-term observations of saccharides in remote marine aerosols from the western North Pacific: A comparison between 1990-1993 and 2006-2009 periods[J]. Atmospheric Environment, 2013, 67(2): 448-458
    [30] Saarnio K. Chemical characterization of fine particles from biomass burning. Doctor Dissertation. Finland: University of Helsinki, 2013
    [31] Saarnio K, Niemi J V, Saarikoski S, et al. Using monosaccharide anhydrides to estimate the impact of wood combustion on fine particles in the Helsinki Metropolitan Area[J]. Boreal Environment Research, 2012, 17: 163-183
    [32] Cheng Y, Brook J R, Li S M, et al. Seasonal variation in the biogenic secondary organic aerosol tracer cis-pinonic acid: Enhancement due to emissions from regional and local biomass burning[J]. Atmospheric Environment, 2011, 45(39): 7105-7112
    [33] Saarnio K, Teinila K, Saarikoski S, et al. Online determination of levoglucosan in ambient aerosols with particle-into-liquid sampler-high-performance anion-exchange chromatography-mass spectrometry (PILS-HPAEC-MS)[J]. Atmospheric Measurement Techniques Discussions, 2013, 6(3): 5495-5527
    [34] Caseiro A, Oliveira C. Variations in wood burning organic marker concentrations in the atmospheres of four European cities[J]. Journal of Environmental Monitoring, 2012, 14(8): 2261-2269
    [35] Maenhaut W, Vermeylen R, Claeys M, et al. Assessment of the contribution from wood burning to the PM10 aerosol in Flanders, Belgium[J]. Science of the Total Environment, 2012, 437(20): 226-236
    [36] Fu P Q, Kawamura K, Okuzawa K, et al. Organic molecular compositions and temporal variations of summertime mountain aerosols over Mt. Tai, North China Plain[J]. Journal of Geophysical Research, 2008, 113(D19): 1429-1443
    [37] Ma S X, Wang Z Z, Bi X H, et al. Composition and source of saccharides in aerosols in Guangzhou, China[J]. Chinese Science Bulletin, 2009, 54(23): 4500-4506
    [38] Sang X F, Zhang Z S, Chan C Y, et al. Source categories and contribution of biomass smoke to organic aerosol over the southeastern Tibetan Plateau[J]. Atmospheric Environment, 2013, 78(3): 113-123
    [39] Engling G, Lee J J, Sie H J, et al. Anhydrosugar characteristics in biomass smoke aerosol-case study of environmental influence on particle-size of rice straw burning aerosol[J]. Journal of Aerosol Science, 2013, 56(2): 2-14
    [40] Cheng Y, Engling G, He K B, et al. The characteristics of Beijing aerosol during two distinct episodes: Impacts of biomass burning and fireworks[J]. Environmental Pollution, 2014, 185: 149-157
    [41] Schkolnik G, Falkovich A H, Rudich Y, et al. New analytical method for the determination of levoglucosan, polyhydroxy compounds, and 2-methylerythritol and its application to smoke and rainwater samples[J]. Environmental Engineering Science, 2005, 39(8): 2744-2752
    [42] Engling G, Carrico C M, Kreidenweis S M, et al. Determination of levoglucosan in biomass combustion aerosol by high-performance anion-exchange chromatography with pulsed amperometric detection[J]. Atmospheric Environment, 2006, 40(3): 299-311
    [43] Fine P M, Cass G R, Simonei B R T. Chemical characterization of fine particle emissions from fireplace combustion of woods grown in the Midwestern and Western United States[J]. Environmental Engineering Science, 2004, 21(3): 387-409
    [44] Otto A, Gondokusumo R, Simpson M J. Characterization and quantification of biomarkers from biomass burning at a recent wildfire site in Northern Alberta, Canada[J]. Applied Geochemistry, 2006, 21(1): 166-183
    [45] Schmidl C, Marr I L, Caseiro A, et al. Chemical characterisation of fine particle emissions from wood stove combustion of common woods growing in mid-European Alpine regions[J]. Atmospheric Environment, 2008, 42(1): 126-141
    [46] Fine P M, Cass G R, Simoneit B R T. Chemical characterization of fine particle emissions from fireplace combustion of woods grown in the Northeastern United States[J]. Environmental Science & Technology, 2001, 35(13): 2665-2675
    [47] Fine P M, Cass G R, Simoneit B R T. Chemical characterization of fine particle emissions from the wood stove combustion of prevalent United States Tree Species[J]. Environmental Engineering Science, 2004, 24(6): 705-721
    [48] Fine P M, Cass G R, Simoneit B R T. Chemical characterization of fine particle emissions from the fireplace combustion of woods grown in the Southern United States[J]. Environmental Science & Technology, 2002, 36(7): 1442-1451
    [49] Iinuma Y, Bruggemann E, Gnauk T, et al. Source characterization of biomass burning particles: The combustion of selected European conifers, African hardwood, savanna grass, and German and Indonesian peat[J]. Journal of Geophysical Research, 2007, 112(D8): 409-427
    [50] Sheesley R J, Schauer J J, Chowdhury Z, et al. Characterization of organic aerosols emitted from the combustion of biomass indigenous to South Asia[J]. Journal of Geophysical Research, 2003, 108(D9): 469-474
    [51] Zhang Y X, Shao M, Zhang Y H, et al. Source profiles of particulate organic matters emitted from cereal straw burnings[J]. Journal of Environmental Sciences, 2007, 19(2): 167-175
    [52] Oros D R, Abas M R B, Omar N Y M J, et al. Identification and emission factors of molecular tracers in organic aerosols from biomass burning: Part 3. Grasses[J]. Applied Geochemistry, 2006, 21(6): 919-940
    [53] Sang X F, Gensch I, Laumer W, et al. Stable carbon isotope ratio analysis of anhydrosugars in biomass burning aerosol particles from source samples[J]. Environmental Science & Technology, 2012, 46(6): 3312-3318
    [54] Fujii Y, Iriana W, Oda M, et al. Characteristics of carbonaceous aerosols emitted from peatland fire in Riau, Sumatra, Indonesia[J]. Atmospheric Environment, 2014, 87: 164-169
    [55] Kawamura K, Izawa Y, Mochida M, et al. Ice core records of biomass burning tracers (levoglucosan and dehydroabietic, vanillic and p-hydroxybenzoic acids) and total organic carbon for past 300 years in the Kamchatka Peninsula, Northeast Asia[J]. Geochimica et Cosmochimica Acta, 2012, 99(2): 317-329
    [56] Kirchgeorg T, Schüpbach S, Kehrwald N, et al. Method for the determination of specific molecular markers of biomass burning in lake sediments[J]. Organic Geochemistry, 2014, 71(6): 1-6
    [57] 张烃, 刘咸德, 董树屏, 等. 生物质燃烧颗粒物有机示踪化合物的测定和应用[J].岩矿测试, 2006, 25(2): 107-113
    [58] Piot C, Jaffrezo J L, Cozic J, et al. Quantification of levoglucosan and its isomers by high performance liquid chromatography-electrospray ionization tandem mass spectrometry and its applications to atmospheric and soil samples[J]. Atmospheric Measurement Techniques, 2012, 5: 141-148
    [59] Wan E C H, Yu J Z. Determination of sugar compounds in atmospheric aerosols by liquid chromatography combined with positive electrospray ionization mass spectrometry[J]. Journal of Chromatography A, 2006, 1107: 175-181
    [60] Gambaro A, Zangrando R, Gabrielli P, et al. Direct determination of levoglucosan at the picogram per milliliter level in Antarctic ice by high-performance liquid chromatography/electrospray ionization triple quadrupole mass spectrometry[J]. Analytical Chemistry, 2008, 80(5): 1649-1655
    [61] Lee J J, Engling G, Lung S C C, et al. Particle size characteristics of levoglucosan in ambient aerosols from rice straw burning[J]. Atmospheric Environment, 2008, 42(35): 8300-8308
    [62] Iinuma Y, Engling G, Puxbaum H, et al. A highly resolved anion-exchange chromatographic method for determination of saccharidic tracers for biomass combustion and primary bio-particles in atmospheric aerosol[J]. Atmospheric Environment, 2009, 43(6): 1367-1371
    [63] Caseiro A, Marr I L, Claeys M, et al. Determination of saccharides in atmospheric aerosol using anion-exchange high-performance liquid chromatography and pulsed-amperometric detection[J]. Journal of Chromatography A, 2007, 1171(1):.37-45
    [64] Saarnio K, Teinil K, Aurela M, et al. High-performance anion-exchange chromatography-mass spectrometry method for determination of levoglucosan, mannosan, and galactosan in atmospheric fine particulate matter[J]. Analytical and Bioanalytical Chemistry, 2010, 398(5): 2253-2264
    [65] Dixon R W, Baltzell G. Determination of levoglucosan in atmospheric aerosols using high performance liquid chromatography with aerosol charge detection[J]. Journal of Chromatography A, 2006, 1109(2): 214-221
  • 加载中
计量
  • 文章访问数:  2413
  • HTML全文浏览数:  2267
  • PDF下载数:  1047
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-04-07
  • 刊出日期:  2015-10-15
王鑫彤, 鞠法帅, 韩德文, 陈奇, 汪午. 大气颗粒物中生物质燃烧示踪化合物的研究进展[J]. 环境化学, 2015, 34(10): 1885-1894. doi: 10.7524/j.issn.0254-6108.2015.10.2015040704
引用本文: 王鑫彤, 鞠法帅, 韩德文, 陈奇, 汪午. 大气颗粒物中生物质燃烧示踪化合物的研究进展[J]. 环境化学, 2015, 34(10): 1885-1894. doi: 10.7524/j.issn.0254-6108.2015.10.2015040704
WANG Xintong, JU Fashuai, HAN Dewen, CHEN Qi, WANG Wu. Research progress on the organic tracers of biomass burning in atmospheric aerosols[J]. Environmental Chemistry, 2015, 34(10): 1885-1894. doi: 10.7524/j.issn.0254-6108.2015.10.2015040704
Citation: WANG Xintong, JU Fashuai, HAN Dewen, CHEN Qi, WANG Wu. Research progress on the organic tracers of biomass burning in atmospheric aerosols[J]. Environmental Chemistry, 2015, 34(10): 1885-1894. doi: 10.7524/j.issn.0254-6108.2015.10.2015040704

大气颗粒物中生物质燃烧示踪化合物的研究进展

  • 1. 上海大学环境与化学工程学院环境污染与健康研究所, 上海, 200444
基金项目:

国家自然科学基金(20877051, 21377078)

国家留学基金委公派留学基金资助.

摘要: 生物质燃烧是大气颗粒物的重要来源.钾离子、脱水糖类(左旋葡聚糖、甘露聚糖、半乳聚糖)、脱氢松香酸等被认为是示踪生物质燃烧的主要化合物. 其中, 脱水糖类由于其良好的化学稳定性和较高的浓度水平, 被广泛用作有关生物质燃烧的检测和估算其对大气颗粒物贡献的代表性化合物. 研究发现, 大气颗粒物中脱水糖类的含量随季节不同而呈现差异;不同类型的生物质经燃烧后产生的气溶胶颗粒物中, 主要示踪化合物的组成比例不同. 如软木燃烧后的左旋葡聚糖/甘露聚糖比值约为4.3、硬木约为23.1、农作物残渣约为32.0. 利用这一特性可以分析大气颗粒物中不同生物质燃烧源的类型和所占比例等. 气相色谱-质谱联用技术是检测大气颗粒物中脱水糖类有机示踪物的主要手段. 该法需要对样品进行前处理. 高效液相色谱-质谱联用技术和高效阴离子交换色谱-脉冲安培检测法可以很好地替代气相色谱质谱联用法, 避免样品的前处理和衍生化反应, 但检测范围较窄. 几种方法各有利弊, 需根据样品的来源和实验目标选择适当的分析方法.

English Abstract

参考文献 (65)

返回顶部

目录

/

返回文章
返回