[1]
|
Krumal K, Mikuska P, Vojtesek M, et al. Seasonal variations of monosaccharide anhydrides in PM1 and PM2.5 aerosol in urban areas[J]. Atmospheric Environment, 2010, 44(39): 5148-5155
|
[2]
|
李兴华, 王书肖, 郝吉明. 民用生物质燃烧挥发性有机化合物排放特征[J]. 环境科学, 2011, 32(12): 3515-3521
|
[3]
|
Alves C A, Goncalves C, Evtyugina M, et al. Particulate organic compounds emitted from experimental wildland fires in a Mediterranean ecosystem[J]. Atmospheric Environment, 2010, 44(23): 2750-2759
|
[4]
|
Reisen F, Meyer C P, McCaw L, et al. Impact of smoke from biomass burning on air quality in rural communities in southern Australia[J]. Atmospheric Environment, 2011, 45(24): 3944-3953
|
[5]
|
Fisseha R, Spahn H, Wegener R, et al. Stable carbon isotope composition of secondary organic aerosol from β-pinene oxidation[J]. Journal of Geophysical Research, 2009, 114, D02304: 1-8
|
[6]
|
Ito A, Penner J E. Historical emissions of carbonaceous aerosols from biomass and fossil fuel burning for the period 1870-2000[J]. Global Biogeochemical Cycles, 2005, 19(2): 273-280
|
[7]
|
Bond T C, Streets D G, Yarber K F, et al. A technology-based global inventory of black and organic carbon emissions from combustion[J]. Journal of Geophysical Research-Atmospheres, 2004, 109(D14): 1149-1165
|
[8]
|
Wang W, Maenhaut W, Yang W, et al. One-year aerosol characterization study for PM2.5 and PM10 in Beijing[J]. Atmospheric Pollution Reseearch, 2014, 5: 554-562
|
[9]
|
Cheng Y, Engling G, He K B, et al. Biomass burning contribution to Beijing aerosol[J]. Atmospheric Chemistry and Physics, 2013, 13(15): 7765-7781
|
[10]
|
Lu Z, Zhang Q, Streets D G. Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996-2010[J]. Atmospheric Chemistry and Physics, 2011, 11(18): 9839-9864
|
[11]
|
Li L J, Wang Y, Zhang Q, et al. Wheat straw burning and its associated impacts on Beijing air quality[J]. Science in China Series D: Earth Sciences, 2008, 51(3): 403-414
|
[12]
|
唐喜斌, 黄成, 楼晟荣, 等. 长三角地区秸秆燃烧排放因子与颗粒物成分谱研究[J]. 环境科学, 2014, 35(5): 1623-1632
|
[13]
|
Jung J, Lee S, Kim H, et al. Quantitative determination of the biomass-burning contribution to atmospheric carbonaceous aerosols in Daejeon, Korea, during the rice-harvest period[J]. Atmospheric Environment, 2014, 89(2): 642-650
|
[14]
|
Simoneit B R T. Organic matter of the troposphere: Ⅲ-characterization sources of petroleum and pyrogenic residues in aerosols over the Western United States[J]. Atmospheric Environment, 1984, 18: 51-67
|
[15]
|
Otto A, Simoneit B R T. Chemosystematics and diagenesis of terpenoids in fossil conifer species and sediment from the Eocene Zeitz formation, Saxony, Germany[J]. Geochimica et Cosmochimica Acta, 2001, 65(20): 3505-3527
|
[16]
|
Oros D R, Simoneit B R T. Identification and emission factors of molecular tracers in organic aerosols from biomass burning: Part 1. Temperate climate conifers[J]. Applied Geochemistry, 2001, 16(13): 1513-1544
|
[17]
|
Otto A, Simoneit B R T. Biomarkers of Holocene buried conifer logs from Bella Coola and north Vancouver, British Columbia, Canada[J]. Organic Geochemistry, 2002, 33(11): 1241-1251
|
[18]
|
Oros D R, Simoneit B R T. Identification and emission factors of molecular tracers in organic aerosols from biomass burning: Part 2. Deciduous trees[J]. Applied Geochemistry, 2001, 16(13): 1545-1565
|
[19]
|
Yamamoto S, Otto A, Krumbiegel G, et al. The natural product biomarkers in succinite, glessite and stantienite ambers from Bitterfeld, Germany[J]. Review of Palaeobotany and Palynology, 2006, 140(1): 27-49
|
[20]
|
Hennigan C J, Sullivan A P, Collett Jr J L, et al. Levoglucosan stability in biomass burning particles exposed to hydroxyl radicals[J]. Geophysical Research Letters, 2010, 37(9): 232-256
|
[21]
|
Hoffmann D, Tilgner A, Iinuma Y, et al. Atmospheric stability of levoglucosan: A detailed laboratory and modeling study[J]. Environmental Science & Technology, 2010, 44(2): 694-699
|
[22]
|
Schkolnik G, Rudich Y. Detection and quantification of levoglucosan in atmospheric aerosols: A review [J]. Analytical and Bioanalytical Chemistry, 2006, 385(1): 26-33
|
[23]
|
Simoneit B R T, Rogge W F, Lang Q, et al. Molecular characterization of smoke from camp fire burning of pine wood (Pinus elliottii) [J]. Chemosphere, 2000, 2(99): 107-122
|
[24]
|
Engling G, Lee J J, Tsai Y W, et al. Size-resolved anhydrosugar composition in smoke aerosol from controlled field burning of rice straw[J]. Aerosol Science and Technology, 2009, 43(7): 662-672
|
[25]
|
Simoneit B R T, Rushdi A I, Binabas M R, et al. Alkyl Amides and Nitriles as novel tracers for biomass burning[J]. Environmental Science & Technology, 2003, 37(1): 16-21
|
[26]
|
Simoneit B R T. Biomass burning-a review of organic tracers for smoke from incomplete combustion[J]. Applied Geochemistry, 2002, 17: 129-162
|
[27]
|
Bergauff M, Ward T, Noonan C, et al. Determination and evaluation of selected organic chemical tracers for wood smoke in airborne particulate matter[J]. International Journal of Environmental Analytical Chemistry, 2008, 88(7): 473-486
|
[28]
|
Simoneit B R T, Elias V O. Detecting organic tracers from biomass burning in the atmosphere[J]. Marine Pollution Bulletin, 2001, 42(10): 805-810
|
[29]
|
Chen J, Kawamura K, Liu C Q, et al. Long-term observations of saccharides in remote marine aerosols from the western North Pacific: A comparison between 1990-1993 and 2006-2009 periods[J]. Atmospheric Environment, 2013, 67(2): 448-458
|
[30]
|
Saarnio K. Chemical characterization of fine particles from biomass burning. Doctor Dissertation. Finland: University of Helsinki, 2013
|
[31]
|
Saarnio K, Niemi J V, Saarikoski S, et al. Using monosaccharide anhydrides to estimate the impact of wood combustion on fine particles in the Helsinki Metropolitan Area[J]. Boreal Environment Research, 2012, 17: 163-183
|
[32]
|
Cheng Y, Brook J R, Li S M, et al. Seasonal variation in the biogenic secondary organic aerosol tracer cis-pinonic acid: Enhancement due to emissions from regional and local biomass burning[J]. Atmospheric Environment, 2011, 45(39): 7105-7112
|
[33]
|
Saarnio K, Teinila K, Saarikoski S, et al. Online determination of levoglucosan in ambient aerosols with particle-into-liquid sampler-high-performance anion-exchange chromatography-mass spectrometry (PILS-HPAEC-MS)[J]. Atmospheric Measurement Techniques Discussions, 2013, 6(3): 5495-5527
|
[34]
|
Caseiro A, Oliveira C. Variations in wood burning organic marker concentrations in the atmospheres of four European cities[J]. Journal of Environmental Monitoring, 2012, 14(8): 2261-2269
|
[35]
|
Maenhaut W, Vermeylen R, Claeys M, et al. Assessment of the contribution from wood burning to the PM10 aerosol in Flanders, Belgium[J]. Science of the Total Environment, 2012, 437(20): 226-236
|
[36]
|
Fu P Q, Kawamura K, Okuzawa K, et al. Organic molecular compositions and temporal variations of summertime mountain aerosols over Mt. Tai, North China Plain[J]. Journal of Geophysical Research, 2008, 113(D19): 1429-1443
|
[37]
|
Ma S X, Wang Z Z, Bi X H, et al. Composition and source of saccharides in aerosols in Guangzhou, China[J]. Chinese Science Bulletin, 2009, 54(23): 4500-4506
|
[38]
|
Sang X F, Zhang Z S, Chan C Y, et al. Source categories and contribution of biomass smoke to organic aerosol over the southeastern Tibetan Plateau[J]. Atmospheric Environment, 2013, 78(3): 113-123
|
[39]
|
Engling G, Lee J J, Sie H J, et al. Anhydrosugar characteristics in biomass smoke aerosol-case study of environmental influence on particle-size of rice straw burning aerosol[J]. Journal of Aerosol Science, 2013, 56(2): 2-14
|
[40]
|
Cheng Y, Engling G, He K B, et al. The characteristics of Beijing aerosol during two distinct episodes: Impacts of biomass burning and fireworks[J]. Environmental Pollution, 2014, 185: 149-157
|
[41]
|
Schkolnik G, Falkovich A H, Rudich Y, et al. New analytical method for the determination of levoglucosan, polyhydroxy compounds, and 2-methylerythritol and its application to smoke and rainwater samples[J]. Environmental Engineering Science, 2005, 39(8): 2744-2752
|
[42]
|
Engling G, Carrico C M, Kreidenweis S M, et al. Determination of levoglucosan in biomass combustion aerosol by high-performance anion-exchange chromatography with pulsed amperometric detection[J]. Atmospheric Environment, 2006, 40(3): 299-311
|
[43]
|
Fine P M, Cass G R, Simonei B R T. Chemical characterization of fine particle emissions from fireplace combustion of woods grown in the Midwestern and Western United States[J]. Environmental Engineering Science, 2004, 21(3): 387-409
|
[44]
|
Otto A, Gondokusumo R, Simpson M J. Characterization and quantification of biomarkers from biomass burning at a recent wildfire site in Northern Alberta, Canada[J]. Applied Geochemistry, 2006, 21(1): 166-183
|
[45]
|
Schmidl C, Marr I L, Caseiro A, et al. Chemical characterisation of fine particle emissions from wood stove combustion of common woods growing in mid-European Alpine regions[J]. Atmospheric Environment, 2008, 42(1): 126-141
|
[46]
|
Fine P M, Cass G R, Simoneit B R T. Chemical characterization of fine particle emissions from fireplace combustion of woods grown in the Northeastern United States[J]. Environmental Science & Technology, 2001, 35(13): 2665-2675
|
[47]
|
Fine P M, Cass G R, Simoneit B R T. Chemical characterization of fine particle emissions from the wood stove combustion of prevalent United States Tree Species[J]. Environmental Engineering Science, 2004, 24(6): 705-721
|
[48]
|
Fine P M, Cass G R, Simoneit B R T. Chemical characterization of fine particle emissions from the fireplace combustion of woods grown in the Southern United States[J]. Environmental Science & Technology, 2002, 36(7): 1442-1451
|
[49]
|
Iinuma Y, Bruggemann E, Gnauk T, et al. Source characterization of biomass burning particles: The combustion of selected European conifers, African hardwood, savanna grass, and German and Indonesian peat[J]. Journal of Geophysical Research, 2007, 112(D8): 409-427
|
[50]
|
Sheesley R J, Schauer J J, Chowdhury Z, et al. Characterization of organic aerosols emitted from the combustion of biomass indigenous to South Asia[J]. Journal of Geophysical Research, 2003, 108(D9): 469-474
|
[51]
|
Zhang Y X, Shao M, Zhang Y H, et al. Source profiles of particulate organic matters emitted from cereal straw burnings[J]. Journal of Environmental Sciences, 2007, 19(2): 167-175
|
[52]
|
Oros D R, Abas M R B, Omar N Y M J, et al. Identification and emission factors of molecular tracers in organic aerosols from biomass burning: Part 3. Grasses[J]. Applied Geochemistry, 2006, 21(6): 919-940
|
[53]
|
Sang X F, Gensch I, Laumer W, et al. Stable carbon isotope ratio analysis of anhydrosugars in biomass burning aerosol particles from source samples[J]. Environmental Science & Technology, 2012, 46(6): 3312-3318
|
[54]
|
Fujii Y, Iriana W, Oda M, et al. Characteristics of carbonaceous aerosols emitted from peatland fire in Riau, Sumatra, Indonesia[J]. Atmospheric Environment, 2014, 87: 164-169
|
[55]
|
Kawamura K, Izawa Y, Mochida M, et al. Ice core records of biomass burning tracers (levoglucosan and dehydroabietic, vanillic and p-hydroxybenzoic acids) and total organic carbon for past 300 years in the Kamchatka Peninsula, Northeast Asia[J]. Geochimica et Cosmochimica Acta, 2012, 99(2): 317-329
|
[56]
|
Kirchgeorg T, Schüpbach S, Kehrwald N, et al. Method for the determination of specific molecular markers of biomass burning in lake sediments[J]. Organic Geochemistry, 2014, 71(6): 1-6
|
[57]
|
张烃, 刘咸德, 董树屏, 等. 生物质燃烧颗粒物有机示踪化合物的测定和应用[J].岩矿测试, 2006, 25(2): 107-113
|
[58]
|
Piot C, Jaffrezo J L, Cozic J, et al. Quantification of levoglucosan and its isomers by high performance liquid chromatography-electrospray ionization tandem mass spectrometry and its applications to atmospheric and soil samples[J]. Atmospheric Measurement Techniques, 2012, 5: 141-148
|
[59]
|
Wan E C H, Yu J Z. Determination of sugar compounds in atmospheric aerosols by liquid chromatography combined with positive electrospray ionization mass spectrometry[J]. Journal of Chromatography A, 2006, 1107: 175-181
|
[60]
|
Gambaro A, Zangrando R, Gabrielli P, et al. Direct determination of levoglucosan at the picogram per milliliter level in Antarctic ice by high-performance liquid chromatography/electrospray ionization triple quadrupole mass spectrometry[J]. Analytical Chemistry, 2008, 80(5): 1649-1655
|
[61]
|
Lee J J, Engling G, Lung S C C, et al. Particle size characteristics of levoglucosan in ambient aerosols from rice straw burning[J]. Atmospheric Environment, 2008, 42(35): 8300-8308
|
[62]
|
Iinuma Y, Engling G, Puxbaum H, et al. A highly resolved anion-exchange chromatographic method for determination of saccharidic tracers for biomass combustion and primary bio-particles in atmospheric aerosol[J]. Atmospheric Environment, 2009, 43(6): 1367-1371
|
[63]
|
Caseiro A, Marr I L, Claeys M, et al. Determination of saccharides in atmospheric aerosol using anion-exchange high-performance liquid chromatography and pulsed-amperometric detection[J]. Journal of Chromatography A, 2007, 1171(1):.37-45
|
[64]
|
Saarnio K, Teinil K, Aurela M, et al. High-performance anion-exchange chromatography-mass spectrometry method for determination of levoglucosan, mannosan, and galactosan in atmospheric fine particulate matter[J]. Analytical and Bioanalytical Chemistry, 2010, 398(5): 2253-2264
|
[65]
|
Dixon R W, Baltzell G. Determination of levoglucosan in atmospheric aerosols using high performance liquid chromatography with aerosol charge detection[J]. Journal of Chromatography A, 2006, 1109(2): 214-221
|