原位即时合成ZnAl-LDH法对Zn的去除机制

章萍, 兰叶倩, 王天琪, 吴代赦, 李萍. 原位即时合成ZnAl-LDH法对Zn的去除机制[J]. 环境化学, 2015, 34(10): 1796-1803. doi: 10.7524/j.issn.0254-6108.2015.10.2015032001
引用本文: 章萍, 兰叶倩, 王天琪, 吴代赦, 李萍. 原位即时合成ZnAl-LDH法对Zn的去除机制[J]. 环境化学, 2015, 34(10): 1796-1803. doi: 10.7524/j.issn.0254-6108.2015.10.2015032001
ZHANG Ping, LAN Yeqian, WANG Tianqi, WU Daishe, LI Ping. Mechanism of zinc removal from aqueous solution with in-situ synthesized ZnAl-LDH[J]. Environmental Chemistry, 2015, 34(10): 1796-1803. doi: 10.7524/j.issn.0254-6108.2015.10.2015032001
Citation: ZHANG Ping, LAN Yeqian, WANG Tianqi, WU Daishe, LI Ping. Mechanism of zinc removal from aqueous solution with in-situ synthesized ZnAl-LDH[J]. Environmental Chemistry, 2015, 34(10): 1796-1803. doi: 10.7524/j.issn.0254-6108.2015.10.2015032001

原位即时合成ZnAl-LDH法对Zn的去除机制

  • 基金项目:

    国家自然科学基金(21467014)

    江西省自然科学基金(20142BAB213020)资助.

Mechanism of zinc removal from aqueous solution with in-situ synthesized ZnAl-LDH

  • Fund Project:
  • 摘要: 利用水泥基材料铝酸三钙(C3A)水化过程中可形成层状双羟基氢氧化物(LDHs)的特性, 研究了C3A对水溶液中Zn2+的去除效果及机制, 并探索了pH、温度对Zn2+去除效果的影响.结果表明, 室温下, 未调节溶液pH时, C3A对废水中Zn2+的最大去除量可达13.7 mmol·g-1;此外, C3A对Zn2+的去除量随反应时间及Zn2+初始浓度的增加而增大, 随后去除量不再变化;在pH值为3—7时, C3A对Zn2+的去除量随pH的升高而增加;在25—35 ℃范围内Zn2+的去除量随温度的升高而增加, 在35-55 ℃范围内Zn2+的去除量随温度的升高反而下降.采用X射线衍射(XRD)、红外(FT-IR)及扫描电镜(SEM)等微观分析手段表明反应固体产物为ZnAl-LDH.结合反应平衡后溶液组分分析表明, 原位即时形成的ZnAl-LDH是通过C3A水化过程中形成的CaAl-LDH与Zn2+发生阳离子交换反应与共沉淀反应协同所致.
  • 加载中
  • [1] 李娜, 刘瑞辉, 张宇燕, 等. 废板栗壳、核桃壳对水溶液锌离子的吸附条件研究[J]. 环境科学与技术, 2014, (S1): 129-131
    [2] 孟祥超, 朱乐辉, 唐亚萍. 废石场锰锌废水处理工程实例[J]. 中国给水排水, 2014, 30 (2): 85-87
    [3] 苏赛赛. 膜分离法处理低浓度含锌废水的实验研究[J]. 山西化工, 2014, 150 (2): 59-62
    [4] El-Kamash A M, Zaki A A, El Gelee M A. Modeling batch kinetics and thermodynamics of zinc and cadmium ions removal from waste solutions using synthetic zeolite A[J]. Journal of Hazardous Materials, 2005. 127(1/3): 211-220
    [5] Yanagisawa H, Matsumoto Y, Machida M. Adsorption of Zn(Ⅱ) and Cd(Ⅱ) ions onto magnesium and activated carbon composite in aqueous solution [J]. Applied Surface Science, 2010, 256(6): 1619-1623
    [6] Egirani D E, Baker A R, Andrews J E. Copper and zinc removal from aqueous solution by mixed mineral systems: I. Reactivity and removal kinetics [J]. Journal of Colloid and Interface Science, 2005, 291(2): 319-325
    [7] Arias F, Sen T K. Removal of zinc metal ion (Zn2+) from its aqueous solution by kaolin clay mineral: A kinetic and equilibrium study [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 348(1-3): 100-108
    [8] Yan Y, Liu Q, Wang J, et al. Single-step synthesis of layered double hydroxides ultrathin nanosheets [J]. Journal of Colloid and Interface Science, 2012, 371(1): 15-19
    [9] Yue C, Chen H, Xu S, et al. Controlled synthesis and investigation of the mechanism of formation of hollow hemispherical protrusions on laurate anion-intercalated Zn/Al layered double hydroxide hybrid films [J]. Journal of Colloid and Interface Science, 2012, 385(1): 268-273
    [10] Malamis S Katsou E. A review on zinc and nickel adsorption on natural and modified zeolite, bentonite and vermiculite: Examination of process parameters, kinetics and isotherms [J]. Journal of Hazardous Materials, 2013. 252-253: 428-461
    [11] Zhang P, Wang T Q, Qian G R, et al. Organo-LDH synthesized via tricalcium aluminate hydration in the present of Na-dodecylbenzenesulfate aqueous solution and subsequent investigated by near-infrared and mid-infrared [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014, 125: 6-12
    [12] Zhang P, Wang T Q, Qian G R, et al Removal of methyl orange from aqueous solutions through adsorption by calcium aluminate hydrates [J]. Journal of Colloid and Interface Science, 2014. 426: 4-10
    [13] Gong J L, Yuan H, Yang H, et al. Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent [J]. Journal of Hazardous Materials, 2009, 164: 1517-1522
    [14] Birnin-Yauri U, Glasser F. 1-Friedel's salt, Ca2Al (OH) 6 (Cl, OH)·2H2O: its solid solutions and their role in chloride binding [J]. Cement and Concrete Research, 1998, 28(12): 1713-1723
    [15] Liu Q, et al. Effective removal of zinc from aqueous solution by hydrocalumite [J]. Chemical Engineering Journal, 2011. 175: 33-38
    [16] StÜber S, PÜllmann H. Synthesis of a lamellar calcium aluminate hydrate (AFm phase) containing benzenesulfonic acid ions [J]. Cement and Concrete Research, 1999, 29(11): 1841-1845
    [17] Lv L, Sun P D, Gu Z Y, et al. Removal of chloride ion from aqueous solution by ZnAl-NO3 layered double hydroxides as anion-exchanger [J]. Journal of Hazardous Materials, 2009, 161(2-3): 1444-1449
    [18] Barahuie F. Synthesis of protocatechuic acid-zinc/aluminium-layered double hydroxide nanocomposite as an anticancer nanodelivery system [J]. Journal of Solid State Chemistry, 2015, 221: 125-131
    [19] Zhang P, Qian G R, Xu Z P, et al. Effective adsorption of sodium dodecylsulfate (SDS) by hydrocalumite (CaAl-LDH-Cl) induced by self-dissolution and re-precipitation mechanism [J]. Journal of Colloid and Interface Science, 2012, 367(1): 264-271
    [20] Zhang P, Wang T Q, Qian G R, et al. Removal of methyl orange from aqueous solutions through adsorption by calcium aluminate hydrates [J]. Journal of Colloid and Interface Science, 2014, 426: 44-47
  • 加载中
计量
  • 文章访问数:  1707
  • HTML全文浏览数:  1623
  • PDF下载数:  751
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-03-20
  • 刊出日期:  2015-10-15
章萍, 兰叶倩, 王天琪, 吴代赦, 李萍. 原位即时合成ZnAl-LDH法对Zn的去除机制[J]. 环境化学, 2015, 34(10): 1796-1803. doi: 10.7524/j.issn.0254-6108.2015.10.2015032001
引用本文: 章萍, 兰叶倩, 王天琪, 吴代赦, 李萍. 原位即时合成ZnAl-LDH法对Zn的去除机制[J]. 环境化学, 2015, 34(10): 1796-1803. doi: 10.7524/j.issn.0254-6108.2015.10.2015032001
ZHANG Ping, LAN Yeqian, WANG Tianqi, WU Daishe, LI Ping. Mechanism of zinc removal from aqueous solution with in-situ synthesized ZnAl-LDH[J]. Environmental Chemistry, 2015, 34(10): 1796-1803. doi: 10.7524/j.issn.0254-6108.2015.10.2015032001
Citation: ZHANG Ping, LAN Yeqian, WANG Tianqi, WU Daishe, LI Ping. Mechanism of zinc removal from aqueous solution with in-situ synthesized ZnAl-LDH[J]. Environmental Chemistry, 2015, 34(10): 1796-1803. doi: 10.7524/j.issn.0254-6108.2015.10.2015032001

原位即时合成ZnAl-LDH法对Zn的去除机制

  • 1. 南昌大学鄱阳湖环境与资源利用教育部重点实验室, 资源环境与化工学院, 南昌, 330047
基金项目:

国家自然科学基金(21467014)

江西省自然科学基金(20142BAB213020)资助.

摘要: 利用水泥基材料铝酸三钙(C3A)水化过程中可形成层状双羟基氢氧化物(LDHs)的特性, 研究了C3A对水溶液中Zn2+的去除效果及机制, 并探索了pH、温度对Zn2+去除效果的影响.结果表明, 室温下, 未调节溶液pH时, C3A对废水中Zn2+的最大去除量可达13.7 mmol·g-1;此外, C3A对Zn2+的去除量随反应时间及Zn2+初始浓度的增加而增大, 随后去除量不再变化;在pH值为3—7时, C3A对Zn2+的去除量随pH的升高而增加;在25—35 ℃范围内Zn2+的去除量随温度的升高而增加, 在35-55 ℃范围内Zn2+的去除量随温度的升高反而下降.采用X射线衍射(XRD)、红外(FT-IR)及扫描电镜(SEM)等微观分析手段表明反应固体产物为ZnAl-LDH.结合反应平衡后溶液组分分析表明, 原位即时形成的ZnAl-LDH是通过C3A水化过程中形成的CaAl-LDH与Zn2+发生阳离子交换反应与共沉淀反应协同所致.

English Abstract

参考文献 (20)

返回顶部

目录

/

返回文章
返回