乙草胺、丁草胺和异丙甲草胺在室外天然水中的非生物降解及其影响因素
Abiotic degradation and influencing factors of acetochlor, butachlor and metolachlor in different waters under natural conditions
-
摘要: 在亚热带冬、夏两季室外自然光照和温度条件下,研究了环境浓度下乙草胺、丁草胺和异丙甲草胺在河水和海水基底中的非生物降解(水解+光解)行为,并结合室内实验研究了非生物降解的影响因素.室外实验结果表明,冬季(气温12.30—26.98 ℃,平均17.47 ℃)乙草胺、丁草胺和异丙甲草胺在河水中的非生物降解半衰期(t1/2)为64—131 d、水解t1/2为105—346 d、光解t1/2为159—410 d,海水中非生物降解t1/2为89—193 d、水解t1/2为77—277 d、光解t1/2为417—630 d;夏季(气温20.77—30.37 ℃,平均27.22 ℃)3种目标农药在河水中非生物降解t1/2为4—20 d、水解t1/2为7—54 d、光解t1/2为7—32 d,海水中非生物降解t1/2为10—50 d、水解t1/2为23—67 d、光解t1/2为17—192 d.目标农药在海水中的残留持久性远高于河水;超纯水条件下,光解在目标农药的非生物降解中占主导地位;河水中的光解速率快于海水.室内实验发现,硝酸盐促进了3种目标农药的水解,同时对乙草胺和丁草胺的光解也起到促进作用;pH升高促进了异丙甲草胺的水解和光解速率,但是抑制了丁草胺的水解和乙草胺、丁草胺的光解;腐殖质添加浓度为10 mg·L-1和20 mg·L-1时促进了3种目标农药的水解,但在浓度达30 mg·L-1时则抑制了乙草胺的水解及异丙甲草胺的光解.总体而言,3种目标农药在实际水环境中的降解半衰期均较长,其降解机理和毒性效应值得进一步研究.Abstract: Abiotic degradation (photolysis and hydrolysis) and its influence factors of three widely-used amide herbicides, acetochlor, butachlor and metolachlor in river water and seawater were studied under both natural and indoor controlled conditions. Outdoor results indicated that in winter season (temperature 12.30—26.98 ℃, average 17.47 ℃) the half-lives of acetochlor, butachlor and metolachlor in river water were 64—131 d for abiotic degradation, 105—346 d for hydrolysis, and 159—410 d for photolysis, while in sea water the corresponding half-lives were 89—193 d, 77—277 d and 417—630 d, respectively. In summer season (temperature 20.77—30.37 ℃, average 27.22 ℃), the corresponding half-lives were 4—20 d, 7—54 d and 7—32 d in river water, and 10—50 d, 23—67 d and 17—192 d in sea water. Target pesticides showed longer stability in sea water than in river water. Photolysis played predominant roles in abiotic degradation and photolysis rates in river water were faster than those in sea water. Under indoor controlled conditions, NO3- and NO-2 were found to promote the hydrolysis process and the photolysis rates of acetochlor and butachlor. High pH accelerated metolachlor's hydrolysis and photolysis, but inhibited butachlor's hydrolysis and photolysis of acetochlor and butachlor. Humic acids at low concentrations of 10 mg·L-1 and 20 mg·L-1 enhanced the hydrolysis process, but inhibited hydrolysis of acetochlor and photolysis of metolachlor at high concentration of 30 mg·L-1. In summary, acetochlor, butachlor and metolachlor are all relatively persistent in aquatic environment, and their degradation mechanisms and toxic effects deserve further study.
-
Key words:
- amide herbicides /
- abiotic degradation /
- hydrolysis /
- photolysis /
- river water /
- seawater
-
-
[1] 王子健, 吕怡兵, 王毅, 等. 淮河水体取代苯类污染及其生态风险[J]. 环境科学学报, 2002, 22(3): 300-304 [2] Xue N D, Xu X B, Jin Z L. Screening 31 endocrine-disrupting pesticides in water and surface sediment samples from Beijing Guanting reservoir[J]. Chemosphere, 2005, 61(11): 1594-1606 [3] 黄群腾. 水环境中36种农药残留的同时分析方法及其应用[D]. 厦门, 厦门大学硕士学位论文, 2008 [4] 罗娜, 刘欣. 除草剂乙草胺的毒性及其内分泌干扰活性研究进展[J]. 环境科学导刊, 2010, 29(6): 10-13 [5] 陈传红, 刘振乾, 傅凤, 等. 丁草胺对杜氏盐藻生理生化的影响[J]. 生态科学, 2007, 26(1): 18-21 [6] 贺鸿志, 余景, 骆世明, 等. 丁草胺和苄嘧磺隆对钝顶螺旋藻的毒性效应研究[J]. 农业环境科学学报, 2011, 30(6): 1075-1079 [7] 金雷, 郭远明, 陈雪昌, 等. 一株乙草胺降解菌株 M-3 的分离鉴定及其代谢途径的初步研究[J]. 农业生物技术学报, 2013, 21(7): 863-869 [8] 谭文捷, 李发生, 杜晓明, 等. 解淀粉芽孢杆菌对水中丁草胺的降解及影响[J]. 环境科学研究, 2005, 18(3): 71-74 [9] 郑和辉, 叶常明. 乙草胺和丁草胺的水解及其动力学[J]. 环境化学, 2001, 20(2): 168-171 [10] 王敏欣, 李发生, 韩梅, 等. 异丙草胺在不同缓冲体系中水解的温度效应研究[J]. 苏州城建环保学院学报, 2002, 15(4): 26-30 [11] Dimou A D, Sakkas V A, Albanis T A. Metolachlor photodegradation study in aqueous media under natural and simulated solar irradiation[J]. Journal of Agricultural and Food Chemistry, 2005, 53:694-701 [12] Zheng H, Ye C. Photodegradation of acetochlor and butachlor in waters containing humic acid and inorganic ion[J]. Bulletin of Environmental Contamination and Toxicology, 2001, 67(4): 601-608 [13] Mathew R, Khan S U. Photodegradation of metolachlor in water in the presence of soil mineral and organic constituents[J]. Journal of Agriculture and Food Chemistry, 1996, 44:3996-4000 [14] Zheng H H, Ye C M. Photodegradation of acetochlor in water and UV photoproducts identified by mass spectrometry[J]. Journal of Environmental Sciences, 2003, 15(6): 783-790 [15] Palmal D, Merli C, Petrucci E. Kinetics of hydrolysisi of two selected pesticides in alkaline conditions[J]. International Conference on Remediation of Chlorinated and Recalcitrant Compounds, 2000, 5(22/25): 245-250 [16] 刘维屏. 农药环境化学[M]. 北京:化学工业出版社, 2006 [17] 杨洪生, 杨曦, 徐珑, 等. 天然水体中腐殖质的光化学研究进展[J]. 感光科学与光化学, 2004, 22(2): 137-144 [18] 王春霞, 彭安. 不同来源腐殖酸的光解及过氧化氢对其影响[J]. 环境科学学报, 1996, 16(3): 270-275 [19] 欧晓霞, 何小慧, 杨名, 等. 腐殖酸的光化学行为研究进展[J]. 安徽农业科学, 2010, 38(20): 10809-10810 [20] Blough N V, Zafiriou O C. Reaction of superoxide with nitric oxide to form peroxonitrite in alkaline aqueous solution[J]. Inorganic Chemistry, 1985, 24(22): 3502-3504 [21] Tichit D, Rolland A, Prinetto F, et al. Comparison of the structural and acid-base properties of Ga-and Al-containing layered double hydroxides obtained by microwave irradiation and conventional ageing of synthesis gels[J]. Journal of Materials Chemistry, 2002, 12(12): 3832-3838 [22] Zafiriou O C, Joussot-dubien J, Zepp R G. Photochemistry of natural waters[J]. Environmental Science and Technology, 1984, 18(12): 358-371 [23] 花日茂, 岳永德, 樊德方. 乙草胺在水中的光化学降解[J]. 农药学学报, 2000, 12(1): 71-74 [24] 花日茂, 岳永德, 邢建国, 等. 腐殖质对乙草胺的光猝灭降解作用的效应[J]. 安徽农业大学学报, 2000, 27(2): 108-111 -

计量
- 文章访问数: 1787
- HTML全文浏览数: 1698
- PDF下载数: 449
- 施引文献: 0