四环素类药物酶修饰基因-tet(X)的起源、分布及在环境中的作用

田哲, 张昱, 杨敏. 四环素类药物酶修饰基因-tet(X)的起源、分布及在环境中的作用[J]. 环境化学, 2014, 33(12): 2027-2037. doi: 10.7524/j.issn.0254-6108.2014.12.003
引用本文: 田哲, 张昱, 杨敏. 四环素类药物酶修饰基因-tet(X)的起源、分布及在环境中的作用[J]. 环境化学, 2014, 33(12): 2027-2037. doi: 10.7524/j.issn.0254-6108.2014.12.003
TIAN Zhe, ZHANG Yu, YANG Min. The origin, environmental distribution and potential application of tetracycline resistance gene-tet(X)[J]. Environmental Chemistry, 2014, 33(12): 2027-2037. doi: 10.7524/j.issn.0254-6108.2014.12.003
Citation: TIAN Zhe, ZHANG Yu, YANG Min. The origin, environmental distribution and potential application of tetracycline resistance gene-tet(X)[J]. Environmental Chemistry, 2014, 33(12): 2027-2037. doi: 10.7524/j.issn.0254-6108.2014.12.003

四环素类药物酶修饰基因-tet(X)的起源、分布及在环境中的作用

  • 基金项目:

    国家自然科学基金项目(21277162)和科技部中日合作课题(2013DFG50150)资助.

The origin, environmental distribution and potential application of tetracycline resistance gene-tet(X)

  • Fund Project:
  • 摘要: 抗性基因作为一类严重威胁人类健康和生命安全的新型环境污染物,近年来引起了广泛的关注.四环素类抗性基因是环境和临床上研究得最多的一大类抗性基因,目前已报道的相关基因共有44种,包含泵出、核糖体保护和酶修饰3种主要机制.相对于前两种机制,酶修饰机制关注得不多.tet(X)是唯一一种研究较为透彻的酶修饰基因,它编码的蛋白可化学修饰和降解四环素,广泛存在于各种环境介质中,对临床耐药性的发展具有一定的贡献.本文综述了tet(X)基因的研究进展,指出有必要重新认识tet(X)对环境中四环素类生物降解的贡献及其对于细菌四环素耐药性发展的重要性,并对tet(X)的未来研究方向进行了展望.
  • 加载中
  • [1] Chopra I, Roberts M. Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance[J]. Microbiology and Molecular Biology Reviews, 2001,65(2): 232-260
    [2] Roberts M C. Tetracycline resistance determinants: Mechanisms of action, regulation of expression, genetic mobility, and distribution[J]. FEMS Microbiology Reviews, 1996,19(1): 1-24
    [3] Sarmah A K, Meyer M T, Boxall A B A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment[J]. Chemosphere, 2006,65(5): 725-759
    [4] Hosoi Y, Asai T, Koike R, et al. Use of veterinary antimicrobial agents from 2005 to 2010 in Japan[J]. International Journal of Antimicrobial Agents, 2013,41(5): 489-490
    [5] 陈育枝, 张元元, 袁希平, 等. 动物四环素类抗生素现状及前景[J]. 兽药与饲料添加剂, 2006,11(3): 16-17
    [6] 李兆君, 姚志鹏, 张杰, 等. 兽用抗生素在土壤环境中的行为及其生态毒理效应研究进展[J]. 生态毒理学报, 2008,3(1): 15-20
    [7] Richardson B J, Lam P K S, Martin M M. Emerging chemicals of concern: Pharmaceuticals and personal care products (PPCPs) in Asia, with particular reference to Southern China[J]. Marine Pollution Bulletin, 2005,50(9): 913-920
    [8] 肖斌, 黄满红, 陈亮. 活性污泥SBR系统对四环素耐药菌和总四环素的去除特性[J]. 环境化学, 2012,31(12): 1974-1978
    [9] Li D, Yang M, Hu J Y, et al. Determination and fate of oxytetracycline and related compounds in oxytetracycline production wastewater and the receiving river[J]. Environmental Toxicology and Chemistry, 2008,27(1): 80-86
    [10] Hughes V M, Datta N. Conjugative plasmids in bacteria of the "pre-antibiotic" era[J]. Nature, 1983,302(5910): 725-726
    [11] Knapp C W, Dolfing J, Ehlert P A I, et al. Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940[J]. Environmental Science & Technology, 2010,44(2): 580-587
    [12] Harnisz M, Golas I, Pietru M. Tetracycline-resistant bacteria as indicators of antimicrobial resistance in protected waters-The example of the Drweca River Nature Reserve (Poland)[J]. Ecological Indicators, 2011,11(2): 663-668
    [13] Schnabel E L, Jones A L. Distribution of tetracycline resistance genes and transposons among phylloplane bacteria in Michigan apple orchards[J]. Applied and Environmental Microbiology, 1999,65(11): 4898-4907
    [14] Rodríguez C, Lang L, Wang A, et al. Lettuce for human consumption collected in Costa Rica contains complex communities of culturable oxytetracycline-and gentamicin-resistant bacteria[J]. Applied and Environmental Microbiology, 2006,72(9): 5870-5876
    [15] Ling A L, Pace N R, Hernandez M T, et al. Tetracycline resistance and Class 1 integron genes associated with indoor and outdoor aerosols[J]. Environmental Science & Technology, 2013,47(9): 4046-4052
    [16] 刘苗苗, 张昱, 李栋, 等. 制药废水受纳河流中四环素抗药基因及微生物群落结构变化研究[J]. 环境科学学报, 2010,30(8): 1551-1557
    [17] Rahman M H, Nonaka L, Tago R, et al. Occurrence of two genotypes of tetracycline (TC) resistance gene tet(M) in the TC-resistant bacteria in marine sediments of Japan[J]. Environmental Science & Technology, 2008,42(14): 5055-5061
    [18] Nonaka L, Ikeno K, Suzuki S. Distribution of tetracycline resistance gene, tet(M), in Gram-positive and Gram-negative bacteria isolated from sediment and seawater at a coastal aquaculture site in Japan[J]. Microbes and Environments, 2007,22(4): 355-364
    [19] Chee-Sanford J C, Aminov R I, Krapac I J, et al. Occurrence and diversity of tetracycline resistance genes in lagoons and groundwater underlying two swine production facilities[J]. Applied and Environmental Microbiology, 2001,67(4): 1494-1502
    [20] Hoa N T, Chieu T T B, Nghia H D T, et al. The antimicrobial resistance patterns and associated determinants in Streptococcus suis isolated from humans in southern Vietnam, 1997-2008[J]. Bmc Infectious Diseases, 2011,11: 6
    [21] Caryl J A, Cox G, Trimble S, et al. "tet(U)" is not a tetracycline resistance determinant[J]. Antimicrobial Agents and Chemotherapy, 2012,56(6): 3378-3379
    [22] Roberts M C. Update on acquired tetracycline resistance genes[J]. Fems Microbiology Letters, 2005,245(2): 195-203
    [23] Thaker M, Spanogiannopoulos P, Wright G D. The tetracycline resistome[J]. Cellular and Molecular Life Sciences, 2010,67(3): 419-431
    [24] Chopra I. Glycylcyclines: Third-generation tetracycline antibiotics[J]. Current Opinion in Pharmacology, 2001,1(5): 464-469
    [25] Ghosh S, LaPara T M. The effects of subtherapeutic antibiotic use in farm animals on the proliferation and persistence of antibiotic resistance among soil bacteria[J]. The ISME Journal, 2007,1(3): 191-203
    [26] Zhang X X, Zhang T. Occurrence, abundance, and diversity of tetracycline resistance genes in 15 sewage treatment plants across China and other global locations[J]. Environmental Science & Technology, 2011,45(7): 2598-2604
    [27] Leski T A, Bangura U, Jimmy D H, et al. Multidrug-resistant tet(X)-containing hospital isolates in Sierra Leone[J]. International Journal of Antimicrobial Agents, 2013,42(1): 83-86
    [28] Bartha N A, Sóki J, Urbán E, et al. Investigation of the prevalence of tetQ, tetX and tetX1 genes in Bacteroides strains with elevated tigecycline minimum inhibitory concentrations[J]. International Journal of Antimicrobial Agents, 2011,38(6): 522-525
    [29] Aminov R I. Evolution in action: Dissemination of tet(X) into pathogenic microbiota[J]. Frontiers in microbiology, 2013,4: 192
    [30] Livermore D M. Tigecycline: What is it, and where should it be used?[J] Journal of Antimicrobial Chemotherapy, 2005,56(4): 611-614
    [31] Bradford P A. Tigecycline: A first in class glycylcycline[J]. Clinical Microbiology Newsletter, 2004,26(21): 163-168
    [32] Moore I F, Hughes D W, Wright G D. Tigecycline is modified by the flavin-dependent monooxygenase TetX[J]. Biochemistry, 2005,44(35): 11829-11835
    [33] Guiney D G, Hasegawa P, Davis C E. Expression in Escherichia coli of cryptic tetracycline resistance genes from bacteroides R plasmids[J]. Plasmid, 1984,11(3): 248-252
    [34] Tally F P, Snydman D R, Shimell M J, et al. Characterization of pBFTM10, a clindamycin-erythromycin resistance transfer factor from Bacteroides fragilis[J]. Journal of Bacteriology, 1982,151(2): 686-691
    [35] Matthews B G, Guiney D G. Characterization and mapping of regions encoding clindamycin resistance, tetracycline resistance, and a replication function on the Bacteroides R plasmid pCP1[J]. Journal of Bacteriology, 1986,167(2): 517-521
    [36] Welch R A, Macrina F L. Physical characterization of Bacteroides fragilis R plasmid pBF4[J]. Journal of Bacteriology, 1981,145(2): 867-872
    [37] Shoemaker N B, Guthrie E P, Salyers A A, et al. Evidence that the clindamycin-erythromycin resistance gene of Bacteroides plasmid pBF4 is on a transposable element[J]. Journal of Bacteriology, 1985,162(2): 626-632
    [38] Shoemaker N B, Getty C, Gardner J F, et al. Tn4351 transposes in Bacteroides spp. and mediates the integration of plasmid R751 into the Bacteroides chromosome[J]. Journal of Bacteriology, 1986,165(3): 929-936
    [39] Robillard N J, Tally F P, Malamy M H. Tn4400, a compound transposon isolated from Bacteroides fragilis, functions in Escherichia coli[J]. Journal of Bacteriology, 1985,164(3): 1248-1255
    [40] Smith C J, Gonda M A. Comparison of the transposon-like structures encoding clindamycin resistance in Bacteroides R-plasmids[J]. Plasmid, 1985,13(3): 182-192
    [41] Guiney D G, Hasegawa P, Davis C E. Homology between clindamycin resistance plasmids in Bacteroides[J]. Plasmid, 1984,11(3): 268-271
    [42] Speer B S, Salyers A A. Characterization of a novel tetracycline resistance that functions only in aerobically grown Escherichia coli[J]. Journal of Bacteriology, 1988,170(4): 1423-1429
    [43] Park B H, Levy S B. The cryptic tetracycline resistance determinant on Tn4400 mediates tetracycline degradation as well as tetracycline efflux[J]. Antimicrobial Agents and Chemotherapy, 1988,32(12): 1797-1800
    [44] Park B H, Hendricks M, Malamy M H, et al. Cryptic tetracycline resistance determinant (class F) from Bacteroides fragilis mediates resistance in Escherichia coli by actively reducing tetracycline accumulation[J]. Antimicrobial Agents and Chemotherapy, 1987,31(11): 1739-1743
    [45] Speer B S, Salyers A A. Novel aerobic tetracycline resistance gene that chemically modifies tetracycline[J]. Journal of Bacteriology, 1989,171(1): 148-153
    [46] Speer B S, Salyer A A. A tetracycline efflux gene on Bacteroides transposon Tn4400 does not contribute to tetracycline resistance[J]. Journal of Bacteriology, 1990,172(1): 292-298
    [47] Speer B S, Bedzyk L, Salyers A A. Evidence that a novel tetracycline resistance gene found on two Bacteroides transposons encodes an NADP-requiring oxidoreductase[J]. Journal of Bacteriology, 1991,173(1): 176-183
    [48] Yang W R, Moore I F, Koteva K P, et al. TetX is a flavin-dependent monooxygenase conferring resistance to tetracycline antibiotics[J]. Journal of Biological Chemistry, 2004,279(50): 52346-52352
    [49] Kumarasamy K K, Toleman M A, Walsh T R, et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: A molecular, biological, and epidemiological study[J]. Lancet Infectious Diseases, 2010,10(9): 597-602
    [50] Nagy E, Urbán E, Nord C E. Antimicrobial susceptibility of Bacteroides fragilis group isolates in Europe: 20 years of experience[J]. Clinical Microbiology and Infection, 2011,17(3): 371-379
    [51] Hoffmann M, DeMaio W, Jordan R A, et al. Metabolism, excretion, and pharmacokinetics of C-14 tigecycline, a first-in-class glycylcycline antibiotic, after intravenous infusion to healthy male subjects[J]. Drug Metabolism and Disposition, 2007,35(9): 1543-1553
    [52] Liu M M, Zhang Y, Yang M, et al. Abundance and distribution of tetracycline resistance genes and mobile elements in an oxytetracycline production wastewater treatment system[J]. Environmental Science & Technology, 2012,46(14): 7551-7557
    [53] Zhang W, Huang M H, Qi F F, et al. Effect of trace tetracycline concentrations on the structure of a microbial community and the development of tetracycline resistance genes in sequencing batch reactors[J]. Bioresource Technology, 2013,150(11): 9-14
    [54] Baker-Austin C, Wright M S, Stepanauskas R, et al. Co-Selection of antibiotic and metal resistance[J]. Trends in Microbiology, 2006,14(4): 176-182
    [55] Ghosh S, Sadowsky M J, Roberts M C, et al. Sphingobacterium sp strain PM2-P1-29 harbours a functional tet(X) gene encoding for the degradation of tetracycline[J]. Journal of Applied Microbiology, 2009,106(4): 1336-1342
    [56] Auerbach E A, Seyfried E E, McMahon K D. Tetracycline resistance genes in activated sludge wastewater treatment plants[J]. Water Research, 2007,41(5): 1143-1151
    [57] McKinney C W, Pruden A. Ultraviolet disinfection of antibiotic resistant bacteria and their antibiotic resistance genes in water and wastewater[J]. Environmental Science & Technology, 2012,46(24): 13393-13400
    [58] Diehl D L, LaPara T M. Effect of temperature on the fate of genes encoding tetracycline resistance and the integrase of class 1 integrons within anaerobic and aerobic digesters treating municipal wastewater solids[J]. Environmental Science & Technology, 2010,44(23): 9128-9133
    [59] Burch T R, Sadowsky M J, Lapara T M. Aerobic digestion reduces the quantity of antibiotic resistance genes in residual municipal wastewater solids[J]. Frontiers in Microbiology, 2013,4:17
    [60] Ma Y J, Wilson C A, Novak J T, et al. Effect of various sludge digestion conditions on sulfonamide, macrolide, and tetracycline resistance genes and class I integrons[J]. Environmental Science & Technology, 2011,45(18): 7855-7861
    [61] Alekshun M N, Levy S B. Molecular mechanisms of antibacterial multidrug resistance[J]. Cell, 2007,128(6): 1037-1050
    [62] Whittle G, Hund B D, Shoemaker N B, et al. Characterization of the 13-kilobase ermF region of the Bacteroides conjugative transposon CTnDOT[J]. Applied and Environmental Microbiology, 2001,67(8): 3488-3495
    [63] LaPara T M, Burch T R, McNamara P J, et al. Tertiary-treated municipal wastewater is a significant point source of antibiotic resistance genes into Duluth-Superior Harbor[J]. Environmental Science & Technology, 2011,45(22): 9543-9549
    [64] Szczepanowski R, Linke B, Krahn I, et al. Detection of 140 clinically relevant antibiotic-resistance genes in the plasmid metagenome of wastewater treatment plant bacteria showing reduced susceptibility to selected antibiotics[J]. Microbiology-Sgm, 2009,155(7): 2306-2319
    [65] Zhang T, Zhang M, Zhang X X, et al. Tetracycline resistance genes and tetracycline resistant lactose-fermenting enterobacteriaceae in activated sludge of sewage treatment plants[J]. Environmental Science & Technology, 2009,43(10): 3455-3460
    [66] Ghosh S, Ramsden S J, LaPara T M. The role of anaerobic digestion in controlling the release of tetracycline resistance genes and class 1 integrons from municipal wastewater treatment plants[J]. Applied Microbiology and Biotechnology, 2009,84(4): 791-796
    [67] Barkovskii A L, Coleman C. Persistent and transient antibiotic resistance genes in swine feeding operations and their environmental fate as affected by farms' operational practices[R]. The Annual Meeting and International Symposium of Microbial Ecology Committee at the Ecological Society of China, 2009, Ningbo, China
    [68] Zhang Y P, Snow D D, Parker D, et al. Intracellular and extracellular antimicrobial resistance genes in the sludge of livestock waste management structures[J]. Environmental Science & Technology, 2013,47(18): 10206-10213
    [69] Wu N, Qiao M, Zhang B, et al. Abundance and diversity of tetracycline resistance genes in soils adjacent to representative swine feedlots in China[J]. Environmental Science & Technology, 2010,44(18): 6933-6939
    [70] Storteboom H N, Kim S C, Doesken K C, et al. Response of antibiotics and resistance genes to high-intensity and low-intensity manure management[J]. Journal of Environmental Quality, 2007,36(6): 1695-1703
    [71] Thames C H, Pruden A, James R E, et al. Excretion of antibiotic resistance genes by dairy calves fed milk replacers with varying doses of antibiotics[J]. Frontiers in microbiology, 2012,3: 139
    [72] Zhu Y G, Johnson T A, Su J Q, et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013,110(9): 3435-3440
    [73] de Vries L E, Vallès Y, Agers Y, et al. The gut as reservoir of antibiotic resistance: microbial diversity of tetracycline resistance in mother and infant[J]. PLoS One, 2011,6(6): e21644
    [74] Barkovskii A L. Antibiotic resistance genes and environmental factors impacting their temporal and spatial distribution in oyster beds. The International Symposium on Environmental Simulation and Pollution Control, 2009, Beijing, China
    [75] Diaz-Torres M L, McNab R, Spratt D A, et al. Novel tetracycline resistance determinant from the oral metagenome[J]. Antimicrobial Agents and Chemotherapy, 2003,47(4): 1430-1432
    [76] Nonaka L, Suzuki S. New Mg2+-dependent oxytetracycline resistance determinant tet 34 in Vibrio isolates from marine fish intestinal contents[J]. Antimicrobial Agents and Chemotherapy, 2002,46(5): 1550-1552
    [77] Dantas G, Sommer M O A, Oluwasegun R D, et al. Bacteria subsisting on antibiotics[J]. Science, 2008,320(5872): 100-103
    [78] Li B, Zhang T. Biodegradation and adsorption of antibiotics in the activated sludge process[J]. Environmental Science & Technology, 2010,44(9): 3468-3473
    [79] Gartiser S, Urich E, Alexy R, et al. Ultimate biodegradation and elimination of antibiotics in inherent tests[J]. Chemosphere, 2007,67(3): 604-613
    [80] Kim S, Eichhorn P, Jensen J N, et al. Removal of antibiotics in wastewater: Effect of hydraulic and solid retention times on the fate of tetracycline in the activated sludge process[J]. Environmental Science & Technology, 2005,39(15): 5816-5823
    [81] Breazeal M V, Novak J T, Vikesland P J, et al. Effect of wastewater colloids on membrane removal of antibiotic resistance genes[J]. Water Research, 2013,47(1): 130-140
    [82] 侯树宇,张清敏,多淼, 等. 白腐真菌和细菌对芘的协同生物降解研究[J]. 农业环境科学学报, 2005,24(2): 318-321
    [83] Gullberg E, Cao S, Berg O G, et al. Selection of resistant bacteria at very low antibiotic concentrations[J]. Plos Pathogens, 2011,7(7): e1002158
    [84] Knapp C W, Engemann C A, Hanson M L, et al. Indirect evidence of transposon-mediated selection of antibiotic resistance genes in aquatic systems at low-level oxytetracycline exposures[J]. Environmental Science & Technology, 2008,42(14): 5348-5353
    [85] 贾燕南, 文湘华, 李佳喜. 木质素降解酶对四环素的降解可行性[J]. 环境科学学报, 2008,28(1): 69-75
    [86] Wen X H, Jia Y N, Li J X. Degradation of tetracycline and oxytetracycline by crude lignin peroxidase prepared from Phanerochaete chrysosporiumA white rot fungus[J]. Chemosphere, 2009,75(8): 1003-1007
    [87] Wen X H, Jia Y N, Li J X. Enzymatic degradation of tetracycline and oxytetracycline by crude manganese peroxidase prepared from Phanerochaete chrysosporium[J]. Journal of Hazardous Materials, 2010,177(1/3): 924-928
    [88] Shi Y J, Wang X H, Qi Z, et al. Sorption and biodegradation of tetracycline by nitrifying granules and the toxicity of tetracycline on granules[J]. Journal of Hazardous Materials, 2011,191(1/3): 103-109
    [89] Pruden A, Pei R, Storteboom H, et al. Antibiotic resistance genes as emerging contaminants: Studies in northern Colorado[J]. Environmental Science & Technology, 2006,40(23): 7445-7450
    [90] Yu Z, Michel F C, Hansen G, et al. Development and application of real-Time PCR assays for quantification of genes encoding tetracycline resistance[J]. Applied and Environmental Microbiology, 2005,(11): 6926-6933
  • 加载中
计量
  • 文章访问数:  2960
  • HTML全文浏览数:  2539
  • PDF下载数:  1459
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-02-20
田哲, 张昱, 杨敏. 四环素类药物酶修饰基因-tet(X)的起源、分布及在环境中的作用[J]. 环境化学, 2014, 33(12): 2027-2037. doi: 10.7524/j.issn.0254-6108.2014.12.003
引用本文: 田哲, 张昱, 杨敏. 四环素类药物酶修饰基因-tet(X)的起源、分布及在环境中的作用[J]. 环境化学, 2014, 33(12): 2027-2037. doi: 10.7524/j.issn.0254-6108.2014.12.003
TIAN Zhe, ZHANG Yu, YANG Min. The origin, environmental distribution and potential application of tetracycline resistance gene-tet(X)[J]. Environmental Chemistry, 2014, 33(12): 2027-2037. doi: 10.7524/j.issn.0254-6108.2014.12.003
Citation: TIAN Zhe, ZHANG Yu, YANG Min. The origin, environmental distribution and potential application of tetracycline resistance gene-tet(X)[J]. Environmental Chemistry, 2014, 33(12): 2027-2037. doi: 10.7524/j.issn.0254-6108.2014.12.003

四环素类药物酶修饰基因-tet(X)的起源、分布及在环境中的作用

  • 1. 中国科学院生态环境研究中心, 环境水质学国家重点实验室, 北京, 100085
基金项目:

国家自然科学基金项目(21277162)和科技部中日合作课题(2013DFG50150)资助.

摘要: 抗性基因作为一类严重威胁人类健康和生命安全的新型环境污染物,近年来引起了广泛的关注.四环素类抗性基因是环境和临床上研究得最多的一大类抗性基因,目前已报道的相关基因共有44种,包含泵出、核糖体保护和酶修饰3种主要机制.相对于前两种机制,酶修饰机制关注得不多.tet(X)是唯一一种研究较为透彻的酶修饰基因,它编码的蛋白可化学修饰和降解四环素,广泛存在于各种环境介质中,对临床耐药性的发展具有一定的贡献.本文综述了tet(X)基因的研究进展,指出有必要重新认识tet(X)对环境中四环素类生物降解的贡献及其对于细菌四环素耐药性发展的重要性,并对tet(X)的未来研究方向进行了展望.

English Abstract

参考文献 (90)

返回顶部

目录

/

返回文章
返回