水铝钙石类阴离子黏土在水污染处理领域应用的研究现状

天娇, 郭清海. 水铝钙石类阴离子黏土在水污染处理领域应用的研究现状[J]. 环境化学, 2013, 32(8): 1571-1579. doi: 10.7524/j.issn.0254-6108.2013.08.024
引用本文: 天娇, 郭清海. 水铝钙石类阴离子黏土在水污染处理领域应用的研究现状[J]. 环境化学, 2013, 32(8): 1571-1579. doi: 10.7524/j.issn.0254-6108.2013.08.024
TIAN Jiao, GUO Qinghai. Research on water contamination treatment by hydrocalumite[J]. Environmental Chemistry, 2013, 32(8): 1571-1579. doi: 10.7524/j.issn.0254-6108.2013.08.024
Citation: TIAN Jiao, GUO Qinghai. Research on water contamination treatment by hydrocalumite[J]. Environmental Chemistry, 2013, 32(8): 1571-1579. doi: 10.7524/j.issn.0254-6108.2013.08.024

水铝钙石类阴离子黏土在水污染处理领域应用的研究现状

  • 基金项目:

    中央高校基本科研业务费专项资金(CUG120505, CUG120113)资助.

Research on water contamination treatment by hydrocalumite

  • Fund Project:
  • 摘要: 水铝钙石(Hydrocalumite)是一种阴离子黏土,又称"弗里德尔盐"(Friedel's Salt),属于层状双金属氢氧化物(LDHs),可通过多种低成本方法人工合成.水铝钙石的层间阴离子具有可交换性,且在一定温度范围内焙烧时所获产物在水溶液中具有层状结构可恢复性,因此在水污染和固体废物处理领域有很大应用价值,已被用于水中B(OH)4-、SeO42-、CrO42-、MoO42-、Zn2+等无机组分和十二烷基硫酸钠(SDS)、烷基苯磺酸钠(SDBS)、甲基橙(MO)、酸性大红(GR)等有机组分的去除实验研究,以及粉煤灰等典型固体废物在填埋前的预处理研究.水铝钙石类阴离子黏土对水中有害组分的去除效果受到离子种类和性质、溶液pH、去除产物溶度积常数等多种因素的影响,所涉及去除机理包括离子交换、溶解-沉淀、表面吸附等.当前利用水铝钙石去除水污染的研究基本局限于实验室研究阶段,并在严格控制的实验条件下进行,因而今后应加强其处理实际受污染水体和原生劣质水的实验研究,并尝试作为填充材料在可渗透性反应墙(PRB)等水污染原位处理装置中加以应用.
  • 加载中
  • [1] 杜以波,李峰,何静. 影响水滑石晶体结构的因素[J]. 燃料化学学报, 1997, 26(05): 66-70
    [2] 王永在. 阴阳离子黏土的比较研究[J]. 地学前沿, 2003, 10(3): 4-10
    [3] 印露, 雷国元, 李陈君,等. 焙烧态镁铝铁类水滑石对磷酸根离子的吸附[J]. 环境化学, 2012, 31(7):1049-1056
    [4] 刘庆. 类水滑石化合物的合成及处理含第一类重金属离子废水的试验研究[D]. 济南:济南大学硕士论文, 2009: 8-10
    [5] 庞秋云. 铜铝类水滑石的制备及吸附性能研究[D]. 曲阜:曲阜师范大学硕士论文, 2009: 12-13
    [6] 刘庆艳, 杨占红. 钙铝类水滑石的合成及在聚氯乙烯的应用//2009年全国高分子学术论文报告会. 2009年全国高分子学术论文报告会论文摘要集(上册)[C]. 天津: 中国化学会, 2009: 308
    [7] 淳宏, 谢文磊,李会. 水滑石和类水滑石化合物在催化反应中的应用[J]. 精细石油化工进展, 2008, 22(4): 52-56
    [8] 俞卫华. 类水滑石矿物的产品分析与应用[J]. 中国非金属矿工业导刊, 2012, 13(2): 47-50
    [9] Sergey N. Structural diversity of layered double hydroxides[J]. Minerals as Advanced Materials, 2008, 23(10):123-128
    [10] Cavani F, Trifiro F, Vaccari A. Hydrotalcite type anionic clays: Preparation, properties and application[J]. Catalysis Today, 1991, 11(2): 173-191
    [11] 赵宁, 廖立兵. 水滑石类化合物及其制备、应用的研究进展[J]. 材料导报, 2011, 2(S1): 543-548
    [12] 景晓燕, 郑崇辉, 王慧颖,等. 水滑石类化合物的研究现状及进展[J]. 应用科技, 2004, 23(10): 41-42
    [13] Carriazo D. A comparative study between chloride and calcined carbonate hydrotalcites as absorbents for Cr(VI)[J]. Applied Clay Science, 2007, 37(12): 231-239
    [14] Vieille L. Hydrocalumite and its polymer derivatives.1.Reversible thermal behavior of Friedel's Salt:A direct observation by means of high-temperature in situ powder X-ray diffraction[J]. Chemistry of Materials, 2003, 15(3): 4361-4368
    [15] Matschei T, Lothenbach B, Glasser F P. The AFm phase in portland cement[J]. Cement and Concrete Research, 2007, 37(11): 118-130
    [16] Cody A M. The effects of chemical environment on the nucleation, growth, and stability of ettringite[Ca3Al(OH)6]2(SO4)3·26H2O[J]. Cement and Concrete Research, 2004, 24(2): 869-881
    [17] 陈敏东, 王洪艳, 刘宝生, 等. 镁铝水滑石固载重铬酸钾及其氧化性能[J]. 环境化学, 2008, 27(5): 591-595
    [18] 范杰, 许昭怡, 郑寿荣,等. Mg-Al型水滑石对水溶液中F的吸附[J]. 环境化学, 2006, 25(4): 425-428
    [19] Clark B A, Brown P W. The formation of calcium sulfoaluminate hydrate compounds,Part I[J]. Cement and Concrete Research, 1999, 29(12): 1943-1948
    [20] Segni R, Vieille L, Leroux F, et al. Hydrocalumite-type materials:1. Interest in hazardous waste immobilization[J]. Journal of Physics and Chemistry of Solids, 2006, 67(21): 1037-1042
    [21] Houri B. Removal of chromate ions from water by anionic clays[J]. Journal of Chemical Physics, 1999, 96(21): 455-463
    [22] Grover K, Komarneni S, Katsuki H, et al. Synthetic hydrotalcite-type and hydrocalumite-type layered double hydroxides for arsenate uptake[J]. Applied Clay Science, 2010, 48(11): 631-637
    [23] Rousselot I. Insights on the structural chemistry of hydrocalumite and hydrotalcite-like materials: Investigation of the series Ca2M3+(OH)6Cl·2H2O(M3+:Al3+,Ga3+,Fe3+,and Sc3+)by X-Ray powder diffraction[J]. Journal of Solid State Chemistry, 2002, 167(32): 137-144
    [24] McCarthy G J, Hassett D J, Bender J A, et al. Synthesis, crystal chemistry and stability of ettringite, a material with potential applications in hazardous waste immobilization[J]. Applied Clay Science, 1992, 43(6):245-251
    [25] Cota I, Ramirez E, Medina F, et al. New synthesis route of hydrocalumite-type materials and their application as basic catalysts for aldol condensation[J]. Applied Clay Science, 2010, 50(2): 498-502
    [26] Zhang M, Reardon E J. Removal of B,Cr,Mo, and Se from wastewater by incorporation into hydrocalumite and ettringite[J]. Environmental Science & Technology, 2003, 37(11): 2947-2952
    [27] Birnin Y U A, Glasser F P. Friedel's salt, Ca2Al(OH)6(Cl OH)·2H2O: Its solid solutions and their role in chloride binding[J]. Cement and Concrete Research, 1998, 28(10):1713-1723
    [28] Mora M. Near-and mid-infrared spectroscopy study of synthetic hydrocalumites[J]. Solid State Sciences, 2011, 13(5): 101-105
    [29] Perkins R B, Palmer C D. Solubility of chromate hydrocalumite (3CaO Al2O3·CaCrO4·nH2O) 5—75℃[J]. Cement and Concrete Research, 2001, 31(2): 983-992
    [30] Bothe J V. PhreeqC modeling of Friedel's salt equilibria at 23±1℃[J]. Cement and Concrete Research, 2004, 34(1):1057-1063
    [31] Perkins R B, Palmer C D. Solubility of Ca62(CrO4)3·26H2O, the chromate analog of ettringite at 5—75℃[J]. Appl Geochem, 2000, 15(9): 1203-1218
    [32] Damidot D, Glasser F P.Thermodynamic investigation of the CaO-Al2O3-CaSO4-H2O system at 25℃[J]. Cement and Concrete Research, 1992, 22(04): 1179-1191
    [33] Myneni S C B, Traina S J, Logan T J. Etrringite solubility and geochemistry of the Ca(OH)2-Al2(SO4)3-H2O system at 1 atm pressure and 298K[J]. Chemical Geology, 1997, 148(8): 1-19
    [34] Goh K H, Lim T T, Dong Z. Application of layered double hydroxides for removal of oxyanions: A review[J]. Water Research, 2008, 42(2): 1343-1368
    [35] Segni R, Vieille L, Leroux F, et al. Hydrocalumite-type materials:2. Local order into Ca2Fe(OH)6(CrO42-)0.5·nH2O in temperature studied by X-ray absorption and Mossbauer spectroscopies[J]. Journal of Physics and Chemistry Of Solids, 2006, 67(6): 1043-1047
    [36] Wu Y, Chi Y, Bai H M, et al. Effective removal of selenate from aqueous solutions by the Friedel phase[J]. Journal of Hazardous Materials, 2010, 176(6): 193-198
    [37] Stanimirova T, Stoilkova T, Kirov G. Cation selectivity during re-crystallization of layered double hydroxides from mixed (Mg Al) oxides Geochem[J]. Journal of mineral and Petrological Sciences, 2007, 45 (1): 119-127
    [38] Damidot D, Stronacha S, Kindnessa A, et al. Thermodynamic investigation of the CaO-Al2O3-CaCO3-H2O closed system at 25℃ and the influence of Na2O[J]. Cement and Concrete Research, 1994, 24 (4):563-572
    [39] Xu Y, Dai Y C, Zhou J Z, et al. Removal efficiency of arsenate and phosphate from aqueous solution using layered double hydroxide materials:Intercalation vs. precipitation[J]. Journal of Materials Chemistry, 2010, 20(2): 4684-4691
    [40] Wang L. The removal and recovery of Cr(Ⅵ) by Li/Al layered double hydroxide (LDH)[J]. Journal of Hazardous Materials, 2007, 142(9): 242-249
    [41] Grover K, Komarneni S, Katsuki H, et al. Uptake of arsenite by synthetic layered double hydroxides[J]. Water Research, 2009, 43(8): 3884-3890
    [42] Qian G, Feng L L, Zhou Z J, et al. Solubility product (Ksp)-controlled removal of chromate and phosphate by hydrocalumite[J]. Chemical Engineering Journal, 2012, 181(1): 251-258
    [43] Zhou J, Feng L, Zhao J, et al. Efficient and controllable phosphate removal on hydrocalumite by multi-step treatment based on pH-dependent precipitation[J]. Chemical Engineering Journal, 2012, 32(3): 219-225
    [44] Woo M A, Kim T W, Paek M J, et al. Phosphate-intercalated Ca-Fe-layered double hydroxides:Crystal structure, bongding character, and release kinetics of phosphate[J]. Journal of Solid State Chemistry, 2011, 184(1): 171-176
    [45] Liu Q, Li Y J, Zhang J, et al. Effective removal of zinc from aqueous solution by hydrocalumite[J]. Chemical Engineering Journal, 2011, 175(4): 33-38
    [46] Zhang P, Qian G R, Xu Z P, et al. Effective adsorption of sodium dodecylsulfate (SDS) by hydrocalumite (CaAl-LDH-Cl) induced by self-dissolution and re-precipitation mechanism[J]. Journal of Colloid and Interface Science, 2012, 367(4): 264-271
    [47] Zhang P, Qian G R, Cheng H, et al. Near-infrared and mid-infrared investigations of Na-dodecylbenzenesulfate intercalated into hydrocalumite chloride(CaAl-LDH-Cl)[J]. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 2011, 79(5): 548-553
    [48] Zhang P, Qian G.R, Shi H, et al. Mechanism of interaction of hydrocalumite (Ca/Al-LDH) with methyl orange and acidic scarlet GR[J]. Journal of Colloid and Interface Science, 2012, 365(1): 110-116
    [49] Guo Q, Reardon E J. Calcined dolomite: Alternative to lime for minimizing undesirable element leachability from fly ash[J]. Industrial & Engineering Chemistry Research, 2012, 51(26):9106-9116
    [50] Palmer S J, Frost R L, Nguyen T, et al. Hydrotalcites and their role in coordination of anions in Bayer liquors: Anion binding in layered double hydroxides[J]. Coordination Chemistry Reviews, 2009, 253 (3):250-267
    [51] Dai Y, Qian G, Cao Y, et al. Effective removal and fixation of Cr (Ⅵ) from aqueous solution with Friedel's salt[J]. Journal of Hazardous Materials, 2009, 170 (3):1086-1092
    [52] Terry P. Characterization of Cr ion exchange with hydrotalcite[J]. Chemosphere, 2004, 57(2): 541-546
    [53] Chrysochoou M, Dermatas D. Evaluation of ettringite and hydrocalumite formation for heavy metal immobilization:Literature review and experimental study[J]. Journal of Hazardous Materials, 2006, 136(3): 20-33
    [54] Yang X, Sun Z, Wang D, et al. Surface acid-base properties and hydration/dehydration mechanisms of aluminum (hydr) oxides[J]. Colloid Interface Sciences., 2007, 308 (1):395-404
    [55] Song Y, Weidler P G, Berg U, et al. Calcite-seeded crystallization of calcium phosphate for phosphorus recovery[J]. Chemosphere, 2006, 63 (4):236-243
    [56] 李明礼, 柳诚, 王祝,等. 地下水常见无机污染物研究进展[J]. 岩矿测试, 2010, 29(5): 565-570
    [57] 胡丽娟, 董晓丹, 周琪,等. 零价铁修复土壤及地下水的PRB技术[J]. 环境保护科学, 2005, 31(130): 48-50
  • 加载中
计量
  • 文章访问数:  2140
  • HTML全文浏览数:  1903
  • PDF下载数:  1766
  • 施引文献:  0
出版历程
  • 收稿日期:  2012-11-16
天娇, 郭清海. 水铝钙石类阴离子黏土在水污染处理领域应用的研究现状[J]. 环境化学, 2013, 32(8): 1571-1579. doi: 10.7524/j.issn.0254-6108.2013.08.024
引用本文: 天娇, 郭清海. 水铝钙石类阴离子黏土在水污染处理领域应用的研究现状[J]. 环境化学, 2013, 32(8): 1571-1579. doi: 10.7524/j.issn.0254-6108.2013.08.024
TIAN Jiao, GUO Qinghai. Research on water contamination treatment by hydrocalumite[J]. Environmental Chemistry, 2013, 32(8): 1571-1579. doi: 10.7524/j.issn.0254-6108.2013.08.024
Citation: TIAN Jiao, GUO Qinghai. Research on water contamination treatment by hydrocalumite[J]. Environmental Chemistry, 2013, 32(8): 1571-1579. doi: 10.7524/j.issn.0254-6108.2013.08.024

水铝钙石类阴离子黏土在水污染处理领域应用的研究现状

  • 1. 中国地质大学环境学院, 武汉, 430074
基金项目:

中央高校基本科研业务费专项资金(CUG120505, CUG120113)资助.

摘要: 水铝钙石(Hydrocalumite)是一种阴离子黏土,又称"弗里德尔盐"(Friedel's Salt),属于层状双金属氢氧化物(LDHs),可通过多种低成本方法人工合成.水铝钙石的层间阴离子具有可交换性,且在一定温度范围内焙烧时所获产物在水溶液中具有层状结构可恢复性,因此在水污染和固体废物处理领域有很大应用价值,已被用于水中B(OH)4-、SeO42-、CrO42-、MoO42-、Zn2+等无机组分和十二烷基硫酸钠(SDS)、烷基苯磺酸钠(SDBS)、甲基橙(MO)、酸性大红(GR)等有机组分的去除实验研究,以及粉煤灰等典型固体废物在填埋前的预处理研究.水铝钙石类阴离子黏土对水中有害组分的去除效果受到离子种类和性质、溶液pH、去除产物溶度积常数等多种因素的影响,所涉及去除机理包括离子交换、溶解-沉淀、表面吸附等.当前利用水铝钙石去除水污染的研究基本局限于实验室研究阶段,并在严格控制的实验条件下进行,因而今后应加强其处理实际受污染水体和原生劣质水的实验研究,并尝试作为填充材料在可渗透性反应墙(PRB)等水污染原位处理装置中加以应用.

English Abstract

参考文献 (57)

返回顶部

目录

/

返回文章
返回