硝基酚、六氯苯污染土壤的微波修复

王贝贝, 朱湖地, 胡丽, 唐振邦, 陈静, 王琳玲, 陆晓华. 硝基酚、六氯苯污染土壤的微波修复[J]. 环境化学, 2013, 32(8): 1560-1565. doi: 10.7524/j.issn.0254-6108.2013.08.022
引用本文: 王贝贝, 朱湖地, 胡丽, 唐振邦, 陈静, 王琳玲, 陆晓华. 硝基酚、六氯苯污染土壤的微波修复[J]. 环境化学, 2013, 32(8): 1560-1565. doi: 10.7524/j.issn.0254-6108.2013.08.022
WANG Beibei, ZHU Hudi, HU Li, TANG Zhenbang, CHEN Jing, WANG Linling, LU Xiaohua. Remediation of 4-Nitrophenol and hexachlorobenzene contaminated soils using microwave energy[J]. Environmental Chemistry, 2013, 32(8): 1560-1565. doi: 10.7524/j.issn.0254-6108.2013.08.022
Citation: WANG Beibei, ZHU Hudi, HU Li, TANG Zhenbang, CHEN Jing, WANG Linling, LU Xiaohua. Remediation of 4-Nitrophenol and hexachlorobenzene contaminated soils using microwave energy[J]. Environmental Chemistry, 2013, 32(8): 1560-1565. doi: 10.7524/j.issn.0254-6108.2013.08.022

硝基酚、六氯苯污染土壤的微波修复

  • 基金项目:

    国家高技术研究发展计划(863计划)(2012AA06A304)

    华中科技大学自主创新研究基金(2012QN126, 2011TS064)资助.

Remediation of 4-Nitrophenol and hexachlorobenzene contaminated soils using microwave energy

  • Fund Project:
  • 摘要: 以典型有机污染物4-硝基酚(4-nitrophenol, 4-NP)和六氯苯(hexachlorobenzene, HCB)污染土壤为处理对象,采用高效吸收微波且保温性能良好的碳化硅材料制成圆柱状装土容器,研究以微波为热源、碳化硅为热传导材料的微波修复设备对污染土壤的修复效果.结果表明,该设备对土壤中有机污染物有较好的去除效果,30 min内去除率均可达到90%以上.有机物的去除不仅是由于碳化硅被加热后的热传递效应,且透过容器的部分微波也可直接作用于污染土壤.实验考察了微波辐照时间、污染物初始浓度、土壤量及含水率、敏化剂等因素对修复效果的影响.辐照时间、土壤量和含水量显著影响土壤升温行为和污染物去除率,而污染物初始污染浓度对去除率影响较小.与马弗炉加热处理效果进行了比较,表明微波加热修复技术在土壤的升温速率及有机物去除率方面均有显著优势.
  • 加载中
  • [1] 刘玉强,李丽,王琪,等. 典型铬渣污染场地的污染状况与综合整治对策[J]. 环境科学研究, 2009, 22(2): 248-253
    [2] 谷庆宝. 中国受污染场地现状及修复技术需求//中英污染土地风险评价与修复国际研讨会论文集[C]. 北京,2005: 163
    [3] Kasai E, Harjanto S, Terui T, et al. Thermal remediation of PCDD/Fs contaminated soil by zone combustion process[J]. Chemosphere, 2000, 41 (6): 857-864.
    [4] 谌伟艳, 韩永忠, 丁太文, 等. 微波热修复污染土壤技术研究进展[J]. 微波学报, 2006, 22(4): 66-70
    [5] Kawala Z, Atamanczuk T. Microwave enhanced thermal decontamination of soil[J]. Environmental Science & Technology, 1998, 32 (17): 2602-2607
    [6] Abramovitch R A, Huang B Z, Davis M, et al. Decomposition of PCB's and other polychlorinated aromatics in soil using microwave energy[J]. Chemosphere 1998, 37(8): 1427-1436
    [7] Abramovitch R A, Huang B Z, Abramovitch D A, et al. In situ decomposition of PCBs in soil using microwave energy[J]. Chemosphere, 1999, 38 (10): 2227-2236
    [8] Abramovitch R A, Huang B Z, Abramovitch D A, et al. In situ decomposition of PAHs in soil and desorption of organic solvents using microwave energy[J]. Chemosphere, 1999, 39 (1): 81-87
    [9] Liu X T, Yu G. Combined effect of microwave and activated carbon on the remediation of polychlorinated biphenyl-contaminated soil[J]. Chemosphere, 2006, 63: 228-235
    [10] Tian M, Yuan S H, Lu X H, et al. Microwave remediation of soil contaminated with hexachlorobenzene[J]. Journal of Hazard Materials, 2006, 137: 878-885
    [11] 李大伟. 石油污染土壤的碳材料增强微波热修复研究[D]. 大连: 大连理工大学博士论文, 2008
    [12] 林莉. 典型化工污染土壤的微波修复技术研究[D]. 武汉: 华中科技大学博士论文, 2010
    [13] Robinson J P, Kingman S W, Snape C E, et al. Remediation of oil-contaminated drill cuttings using continuous microwave heating[J]. Chemical Engineering Journal, 2009, 152(2/3): 458-463
    [14] Chien Y C. Field study of in situ remediation of petroleum hydrocarbon contaminated soil on site using microwave energy[J]. Journal of Hazard Materials, 2012, 199: 457-461
    [15] Cioni B, Petarca L. Petroleum products removal from contaminated soils using microwave heating[A]. Icheap-10: 10th International Conference on Chemical and Process Engineering, Pts 1-3. Chemical Engineering Transactions, 2011, 24: 1033-1038
    [16] 万立国, 田禹, 张丽君,等. 碳化硅辅助微波热解污泥反应条件优化研究[J]. 环境科学与技术, 2011, 34 (5): 148-151
    [17] Kastanek P, Kastanek F, Hajek M. Microwave-enhanced thermal desorption of polyhalogenated biphenyls from contaminated soil[J]. Journal of Environmental Engineering, 2010, 136: 295-300
    [18] Punt M M, Raghavan GSV, Bélanger J M R, et al. Microwave-assisted process (MAPTM) for the extraction of contaminants from soil[J]. Journal of Soil Contamination, 1999, 8(5): 577-592
    [19] Zdzlsla W W, Tomas Z Z. Microwave enhanced thermal decontamination of soil[J]. Environmental Science & Technology, 1998, 32:2602-2607
    [20] 刘珑, 王殿生, 曾秋孙,等. 微波修复石油污染土壤升温特性影响因素的实验研究[J]. 环境工程学报, 2011, 5(4): 898-902
    [21] 但德忠,罗方若,袁东,等. 土壤及沉积物样品预处理的新技术——微波萃取法[J]. 矿物岩石, 2000, 20: 91-95
    [22] 熊国华,梁金明,邹世春,等. 微波萃取土壤中PAHs的研究[J]. 高等学校化学学报, 1998, 19 (10):1560-1565
    [23] 杨谨. 微波加热与传统加热方式的异同[J]. 工程机械与维修, 2006, 04: 89-90
  • 加载中
计量
  • 文章访问数:  1114
  • HTML全文浏览数:  1088
  • PDF下载数:  625
  • 施引文献:  0
出版历程
  • 收稿日期:  2012-11-05
王贝贝, 朱湖地, 胡丽, 唐振邦, 陈静, 王琳玲, 陆晓华. 硝基酚、六氯苯污染土壤的微波修复[J]. 环境化学, 2013, 32(8): 1560-1565. doi: 10.7524/j.issn.0254-6108.2013.08.022
引用本文: 王贝贝, 朱湖地, 胡丽, 唐振邦, 陈静, 王琳玲, 陆晓华. 硝基酚、六氯苯污染土壤的微波修复[J]. 环境化学, 2013, 32(8): 1560-1565. doi: 10.7524/j.issn.0254-6108.2013.08.022
WANG Beibei, ZHU Hudi, HU Li, TANG Zhenbang, CHEN Jing, WANG Linling, LU Xiaohua. Remediation of 4-Nitrophenol and hexachlorobenzene contaminated soils using microwave energy[J]. Environmental Chemistry, 2013, 32(8): 1560-1565. doi: 10.7524/j.issn.0254-6108.2013.08.022
Citation: WANG Beibei, ZHU Hudi, HU Li, TANG Zhenbang, CHEN Jing, WANG Linling, LU Xiaohua. Remediation of 4-Nitrophenol and hexachlorobenzene contaminated soils using microwave energy[J]. Environmental Chemistry, 2013, 32(8): 1560-1565. doi: 10.7524/j.issn.0254-6108.2013.08.022

硝基酚、六氯苯污染土壤的微波修复

  • 1.  华中科技大学环境科学研究所, 武汉, 430074;
  • 2.  华中科技大学化学与化工学院, 武汉, 430074
基金项目:

国家高技术研究发展计划(863计划)(2012AA06A304)

华中科技大学自主创新研究基金(2012QN126, 2011TS064)资助.

摘要: 以典型有机污染物4-硝基酚(4-nitrophenol, 4-NP)和六氯苯(hexachlorobenzene, HCB)污染土壤为处理对象,采用高效吸收微波且保温性能良好的碳化硅材料制成圆柱状装土容器,研究以微波为热源、碳化硅为热传导材料的微波修复设备对污染土壤的修复效果.结果表明,该设备对土壤中有机污染物有较好的去除效果,30 min内去除率均可达到90%以上.有机物的去除不仅是由于碳化硅被加热后的热传递效应,且透过容器的部分微波也可直接作用于污染土壤.实验考察了微波辐照时间、污染物初始浓度、土壤量及含水率、敏化剂等因素对修复效果的影响.辐照时间、土壤量和含水量显著影响土壤升温行为和污染物去除率,而污染物初始污染浓度对去除率影响较小.与马弗炉加热处理效果进行了比较,表明微波加热修复技术在土壤的升温速率及有机物去除率方面均有显著优势.

English Abstract

参考文献 (23)

返回顶部

目录

/

返回文章
返回