采用实验和密度泛函理论计算揭示吸光性环境介质对多环芳烃光降解的影响机制

邵建平, 陈景文, 谢晴, 张思玉. 采用实验和密度泛函理论计算揭示吸光性环境介质对多环芳烃光降解的影响机制[J]. 环境化学, 2013, 32(7): 1246-1252. doi: 10.7524/j.issn.0254-6108.2013.07.017
引用本文: 邵建平, 陈景文, 谢晴, 张思玉. 采用实验和密度泛函理论计算揭示吸光性环境介质对多环芳烃光降解的影响机制[J]. 环境化学, 2013, 32(7): 1246-1252. doi: 10.7524/j.issn.0254-6108.2013.07.017
SHAO Jianping, CHEN Jingwen, XIE Qing, ZHANG Siyu. Employing experiment and density functional theory calculation to unveil the effects of light-absorbing media on photodegradation of polycyclic aromatic hydrocarbons[J]. Environmental Chemistry, 2013, 32(7): 1246-1252. doi: 10.7524/j.issn.0254-6108.2013.07.017
Citation: SHAO Jianping, CHEN Jingwen, XIE Qing, ZHANG Siyu. Employing experiment and density functional theory calculation to unveil the effects of light-absorbing media on photodegradation of polycyclic aromatic hydrocarbons[J]. Environmental Chemistry, 2013, 32(7): 1246-1252. doi: 10.7524/j.issn.0254-6108.2013.07.017

采用实验和密度泛函理论计算揭示吸光性环境介质对多环芳烃光降解的影响机制

  • 基金项目:

    国家重点基础研究计划(973)课题(2013CB430403)和国家自然科学重点基金(21137001)资助.

Employing experiment and density functional theory calculation to unveil the effects of light-absorbing media on photodegradation of polycyclic aromatic hydrocarbons

  • Fund Project:
  • 摘要: 多环芳烃(PAHs)在环境中的光降解动力学受环境介质吸光组分的影响.为揭示介质吸光组分对PAHs光降解影响的内在机制,以吸光很弱的甲醇和吸光较强的丙酮和二甲基亚砜(DMSO)为模拟环境介质,考察不同吸光性溶剂介质对3种PAHs(菲、芘和苯并[a]芘)光解的影响;并采用密度泛函理论(DFT)计算,分析了溶剂分子光敏化能量/电子转移反应对PAHs光解的影响机制.结果表明,激发态的丙酮分子抑制了菲和芘的光解,而加快了苯并[a]芘的光解;激发态的DMSO分子抑制了菲的光解,促进了芘和苯并[a]芘的光解.过滤掉DMSO所吸收的部分光谱频段后,PAHs在DMSO中的光解速率与甲醇中的接近.DFT计算表明,激发态的丙酮或DMSO主要作为电子受体与PAHs发生光敏化电子转移反应,是影响PAHs光解的内在原因.
  • 加载中
  • [1] Lee R F, Gardner W S, Anderson J W, et al. Fate of polycyclic aromatic hydrocarbons in controlled ecosystem enclosures [J]. Environmental Science Technology, 1978, 12(7): 832-838
    [2] Kochany J, Maguire R J. Abiotic transformations of polynuclear aromatic hydrocarbons and polynuclear aromatic nitrogen heterocycles in aquatic environments [J]. Science of the Total Environment, 1994, 144: 17-31
    [3] Behymer T D, Hites R A. Photolysis of polycyclic aromatic hydrocarbons adsorbed on simulated atmospheric particulates [J]. Environmental Science Technology, 1985, 19(10): 1004-1006
    [4] Niu J F, Chen J W, Martens D, et al. Photolysis of polycyclic aromatic hydrocarbons adsorbed on spruce needles under sunlight irradiation [J]. Environmental Pollution, 2003, 123(1): 39-45
    [5] Li C M, Mu J Z, Zhang Y. Study on effects of cyclodextrins on the photolysis of dissolved anthracene by fluorometry [J]. Luminescence: The Journal of Biological and Chemical Luminescence, 2005, 20(4/5): 261-265
    [6] Fasnacht M P, Blough N V. Aqueous photodegradation of polycyclic aromatic hydrocarbons [J]. Environmental Science Technology, 2003, 36(20): 4364-4369
    [7] Jang M, Mcdow S R. Benzanthracene photodegradation in the presence of known organic constituents of atmospheric aerosols [J]. Environmental Science Technology, 1995, 29: 2654-2660
    [8] Zhao X H, Hu X K, Hwang H M. Effects of riboflavin on the phototransformation of benzopyrene [J]. Chemosphere, 2006, 63(7): 1116-1123
    [9] Wang D G, Chen J W, Xu Z, et al. Disappearance of polycyclic aromatic hydrocarbons sorbed on surfaces of pine needles under irradiation of sunlight: Volatilization and photolysis [J]. Atmospheric Environment, 2005, 39(25): 4583-4591
    [10] Fasnacht M P, Blough N V. Mechanisms of the aqueous photodegradation of polycyclic aromatic hydrocarbons [J]. Environmental Science Technology, 2003, 37(24): 5767-5772
    [11] Zhang M J, Yang X, Xian Q M, et al. Photosensitized degradation of bisphenol A involving reactive oxygen species in the presence of humic substances [J]. Chemosphere, 2006, 63(3): 378-386
    [12] Venkatesh R, Harrison S K. Photolytic degradation of 2,4-D on Zea mays leaves [J]. Weed Science, 1999, 47(3): 262-269
    [13] Feilberg A, Nielsen T. Photodegradation of nitro-PAHs in viscous organic media used as models of organic aerosols [J]. Environmental Science Technology, 2001, 35(1): 108-113
    [14] Katagi T. Photodegradation of pesticides on plant and soil surface [J]. Reviews of Environment Contamination and Toxicology, 2004, 182: 1-195
    [15] Feilberg A, Nielsen T. Effect of aerosol chemical composition on the photodegradation of nitro-polycyclic aromatic hydrocarbons [J]. Environmental Science Technology, 2000, 34(5): 789-797
    [16] Mallakin A, McConkey B J, Miao G B, et al. Impacts of structural photomodification on the toxicity of environmental contaminants: Anthracene photooxidation products [J]. Ecotoxicology and Environmental Safety, 1999, 43(2): 204-212
    [17] Chu W, Tsui S M. Photo-sensitization of diazodisperse dye in aqueous acetone [J]. Chemosphere, 1999, 39(10): 1667-1677
    [18] Inbar S, Linschitz H, Cohen S. Nanosecond flash studies of reduction of benzophenone by aliphatic amines-Quantum yields and kinetic isotope effects [J]. Journal of Chemical Society, 1981, 103: 1048-1054
    [19] Kavarnos G J, Turro N J. Photosensitization by reversible electron-transfer: Theories, experimental evidence, and examples [J]. Chemical Reviews, 1986, 86(2): 401-449
    [20] Wang Y, Chen J W, Ge L K, et al. Experimental and theoretical studies on the photoinduced acute toxicity of a series of anthraquinone derivatives towards the water flea (Daphnia magna) [J]. Dyes Pigments, 2009, 83(3): 276-280
    [21] Zhang S Y, Chen J W, Qiao X L, et al. Quantum chemical investigation and experimental verification on the aquatic photochemistry of the sunscreen 2-phenylbenzimidazole-5-sulfonic acid [J]. Environmental Science Technology, 2010, 44(19): 7484-7490
    [22] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09, Revision A.02 . Gaussian, Inc.: Wallingford, CT., 2009
    [23] Tomasi J, Mennucci B, Cammi R. Quantum mechanical continuum solvation models [J]. Chemical Reviews, 2005, 105(8): 2999-3093
    [24] Montalti M, Credi A, Prodi L, et al. Handbook of photochemistry(third edition) [M]. CRC Press, 2006: 83-301
    [25] Miller J S, Olejnik D. Photolysis of polycyclic aromatic hydrocarbons in water [J]. Water Research, 2001, 35(1): 233-243
    [26] Shao J P, Chen J W, Xie Q, et al. Electron-accepting potential of solvents determines photolysis rates of polycyclic aromatic hydrocarbons: Experimental and density functional theory study [J]. Journal of Hazardous Materials, 2010, 179(1/3): 173-177
  • 加载中
计量
  • 文章访问数:  1165
  • HTML全文浏览数:  1131
  • PDF下载数:  873
  • 施引文献:  0
出版历程
  • 收稿日期:  2013-01-16
邵建平, 陈景文, 谢晴, 张思玉. 采用实验和密度泛函理论计算揭示吸光性环境介质对多环芳烃光降解的影响机制[J]. 环境化学, 2013, 32(7): 1246-1252. doi: 10.7524/j.issn.0254-6108.2013.07.017
引用本文: 邵建平, 陈景文, 谢晴, 张思玉. 采用实验和密度泛函理论计算揭示吸光性环境介质对多环芳烃光降解的影响机制[J]. 环境化学, 2013, 32(7): 1246-1252. doi: 10.7524/j.issn.0254-6108.2013.07.017
SHAO Jianping, CHEN Jingwen, XIE Qing, ZHANG Siyu. Employing experiment and density functional theory calculation to unveil the effects of light-absorbing media on photodegradation of polycyclic aromatic hydrocarbons[J]. Environmental Chemistry, 2013, 32(7): 1246-1252. doi: 10.7524/j.issn.0254-6108.2013.07.017
Citation: SHAO Jianping, CHEN Jingwen, XIE Qing, ZHANG Siyu. Employing experiment and density functional theory calculation to unveil the effects of light-absorbing media on photodegradation of polycyclic aromatic hydrocarbons[J]. Environmental Chemistry, 2013, 32(7): 1246-1252. doi: 10.7524/j.issn.0254-6108.2013.07.017

采用实验和密度泛函理论计算揭示吸光性环境介质对多环芳烃光降解的影响机制

  • 1.  工业生态与环境工程教育部重点实验室,大连理工大学环境学院, 大连, 116024;
  • 2.  环境模拟与污染控制国家重点联合实验室,清华大学环境学院持久性有机污染物研究中心, 北京, 100084
基金项目:

国家重点基础研究计划(973)课题(2013CB430403)和国家自然科学重点基金(21137001)资助.

摘要: 多环芳烃(PAHs)在环境中的光降解动力学受环境介质吸光组分的影响.为揭示介质吸光组分对PAHs光降解影响的内在机制,以吸光很弱的甲醇和吸光较强的丙酮和二甲基亚砜(DMSO)为模拟环境介质,考察不同吸光性溶剂介质对3种PAHs(菲、芘和苯并[a]芘)光解的影响;并采用密度泛函理论(DFT)计算,分析了溶剂分子光敏化能量/电子转移反应对PAHs光解的影响机制.结果表明,激发态的丙酮分子抑制了菲和芘的光解,而加快了苯并[a]芘的光解;激发态的DMSO分子抑制了菲的光解,促进了芘和苯并[a]芘的光解.过滤掉DMSO所吸收的部分光谱频段后,PAHs在DMSO中的光解速率与甲醇中的接近.DFT计算表明,激发态的丙酮或DMSO主要作为电子受体与PAHs发生光敏化电子转移反应,是影响PAHs光解的内在原因.

English Abstract

参考文献 (26)

返回顶部

目录

/

返回文章
返回