[1]
|
Casey W H. Large aqueous aluminum hydroxide molecules [J]. Chem Rev, 2006, 106(1): 1-16
|
[2]
|
[2] Pascual-Cosp J, Artiaga R, Corpas-Iglesias F, et al. Synthesis and characterization of a new aluminum-based compound [J]. Dalton Trans, 2009, 32: 6299-6308
|
[3]
|
[3] Sun Z, Zhao H D, Tong H, et al. Formation and structure of [Al13(μ3-OH)6( μ2-OH)6( μ2-OH)12(H2O)24]Cl15·13H2O [J]. Chinese J Struct Chem, 2006, 25(10): 1217-1227
|
[4]
|
[4] Gatlin J T, Mensinger Z L, Zakharov L N, et al. Facile synthesis of the tridecameric Al13 nanocluster Al13(μ3-OH)6(μ2-OH)18(H2O)24(NO3)15 [J]. Inorg Chem, 2008, 47: 1267-1269
|
[5]
|
[6] Qian Z S, Feng H, Yang W J, et al. Theoretical investigation of water exchange on the nanometer-sized polyoxocation AlO4Al12(OH)24(H2O)127+ (Keggin-Al13) in aqueous solution [J]. J Am Chem Soc, 2008, 130(44): 14402-14403
|
[6]
|
[7] Qian Z S, Feng H, Zhang Z J, et al. Theoretical exploration of the water exchange mechanism of the polyoxocation GaO4Al12(OH)24(H2O)127+ in aqueous solution [J]. Geochim Cosmochim Acta, 2009, 73: 1588-1596
|
[7]
|
[8] Jin X Y, Yang W J, Tang J, et al. Insight into the structural characteristics of core-links and flat-aluminum tridecamers: A density functional theory study [J]. Dalton Trans, 2012, 41: 1027-1032
|
[8]
|
[9] Evans R J, Rustad J R, Casey W H. Calculating geochemical reaction pathways - Exploration of the inner-sphere water exchange mechanism in Al(H2O)63++nH2O with ab initio calculations and molecular dynamics [J]. J Phys Chem A, 2008, 112(17): 4125-4140
|
[9]
|
[10] Qian Z S, Feng H, Yang W J, et al. Density functional studies on the structural characteristics, 27Al NMR chemical shifts and the water exchange reactions of Al30O8(OH)56(H2O)2618+ (Al30) in aqueous solution [J]. Geochim Cosmochim Acta, 2010, 74: 1230-1237
|
[10]
|
[11] Jin X Y, Qian Z S, Lu B M, et al. Density functional theory study on aqueous aluminum-fluoride complexes: Exploration of the intrinsic relationship between water-exchange rate constants and structural parameters for monomer aluminum complexes [J]. Environ Sci Technol, 2011, 45(1): 288-293
|
[11]
|
[12] Nordin J P, Sullivan D J, Phillips B L, et al. An 17O NMR study of the exchange of water on AlOH(H2O)52+(aq) [J]. Inorg Chem, 1998, 37: 4760-4763
|
[12]
|
[13] Swaddle T W, Rosenqvist J, Yu P, et al. Kinetic evidence for five-coordination in AlOH2+ ion [J]. Science, 2005, 308(5727): 1450-1453
|
[13]
|
[14] Hanauer H, Puchta R, Clark T, et al. Searching for stable, five-coordinate aquated Al(Ⅲ) species. Water exchange mechanism and effect of pH [J]. Inorg Chem, 2007, 46: 1112-1122
|
[14]
|
[15] Ruiz J M, McAdon M H, Garcés J M. Aluminum complexes as models for broensted acid sites in zeolites: Structure and energetics of [Al(OH)4]-, [Al(H2O)6]3+, and intermediate monomeric species [Al(OH)x(H2O)n-x·mH2O]3-x obtained by hydrolysis [J]. J Phys Chem B, 1997, 101: 1733-1744
|
[15]
|
[16] Ikeda T, Hirata M, Kimura T. Hydrolysis of Al3+ from constrained molecular dynamics [J]. J Chem Phys, 2006: 124, 074503
|
[16]
|
[17] Jin X Y, Qian Z S, Lu B M, et al. DFT study on the mechanism for the substitution of F- into Al(Ⅲ) complexes in aqueous solution [J]. Dalton Trans, 2011, 40: 567-572
|
[17]
|
[18] Bi Z, Feng C H, Wang D S, et al. Transformation of Mogel Al13 to epsilon Keggin Al13 in dissolution process [J]. Colloids Surface A, 2012, 407: 91-98
|
[18]
|
[19] Seichter W, Mogel H J, Brand P, et al. Crystal stucture and formation of the aluminium hydroxide chloride [Al13(OH)24(H2O)24]Cl15·13H2O [J]. Eur J Inorg Chem, 1998, 6: 795-797
|