Pb、Zn及其交互作用对蜈蚣草抗氧化酶及叶绿素含量的影响
Effect of Pb and Zn interaction on antioxidant enzymes and chlorophyll content of Pteris vittata
-
摘要: 采用水培实验的方法,研究了Pb、Zn及其交互作用对蜈蚣草抗氧化酶及叶绿素含量的影响.实验结果显示,Pb浓度在0-50 mg·L-1时,蜈蚣草叶绿素含量随Zn浓度增加逐渐升高、MDA含量逐渐降低,Pb、Zn交互作用可促进植株叶绿素合成.Pb浓度在100-400 mg·L-1时,Pb、Zn交互作用则降低叶绿素含量;在Pb浓度400 mg·L-1时,Pb、Zn交互作用显著增加MDA含量.实验结果还显示,在Pb浓度固定时,蜈蚣草叶片SOD、CAT的活性随Zn浓度增加呈现先上升后下降的趋势;POD随着Zn处理浓度的增加持续增加.在Zn浓度一定时,蜈蚣草叶片SOD、CAT、POD的活性随Pb浓度增加先上升后下降.由此可见,在低Pb、Zn浓度下,Pb、Zn交互作用表现为协同作用;在高Pb、Zn浓度下,Pb、Zn交互作用表现为拮抗作用.Abstract: The effect of Pb and Zn interaction on antioxidant enzymes and chlorophyll content in Pteris vittata were evaluated by the nutrient solution culture experiments. The results showed that when Pb concentration was between 0-50 mg·L-1, chlorophyll content of Pteris vittata gradually increased and MDA content decreased with increasing Zn concentrations. Pb and Zn interaction promoted the synthesis of chlorophyll. When the Pb concentration was between 100-400 mg·L-1, Pb and Zn interaction decreased chlorophyll content. When the Pb concentration was 400 mg·L-1,the interaction increased MDA content significantly.The experimental results also showed that when Pb concentration was fixed, SOD and CAT activities in Pteris vittata increased first and then decreased with increasing Zn concentrations, and POD activity increased continuously. When Zn concentration was fixed, SOD,CAT and POD activities increased first and then decreased with increasing Pb concentration. It can be seen that at low Pb and Zn concentrations, their interaction presented synergistic,while at high concentrations,they showed antagonistic effect.
-
Key words:
- Pb /
- Zn /
- interaction /
- Pteris vittata /
- antioxidant enzymes /
- chlorophyll
-
-
[1] 许中坚,吴灿辉,邱喜阳,等.铅-锌-镉复合污染物在土壤-芥菜/油菜系统中的迁移及交互作用[J].水土保持学报,2007,21(6):1-6 [2] 林大松,徐应明,孙国红,等.土壤重金属污染复合效应对小白菜生长及重金属累积的影响[J].农业环境科学学报,2006,25:72-75 [3] 朱启红,夏红霞.蜈蚣草对Pb、Zn复合污染的响应[J].环境化学,2012,31(7):1029-1035 [4] Xiao X Y, Chen T B, An Z Z, et al. Potential of Pteris vittata L. for phytoremediation of sites co-contaminated with cadmium and arsenic:The tolerance and accumulation[J].Journal of Environmental Sciences,2008,20(1): 62-67 [5] 谢景千,雷梅,陈同斌,等.蜈蚣草对污染土壤中As、Pb、Zn、Cu的原位去除效果[J].环境科学学报,2010,30(1):165-171 [6] 刘俊祥,孙振元,巨关升,等.结缕草对重金属镉的生理响应[J].生态学报,2011,31(20):6149-6156 [7] [8] 张志良,瞿伟菁.植物生理学实验指导(第三版)[M].北京:高等教育出版社,2007 [9] 张永霞,石贵玉,李霞,等.铬胁迫对罗汉果幼苗生理生化指标的影响[J].中国农学通报,2011(2):717-720 [10] 张银秋,台培东,李培军,等.镉胁迫对万寿菊生长及生理生态特征的影响[J].环境工程学报,2011,5(1):195-199 [11] 何冰,叶海波,杨肖娥.铅胁迫下不同生态型东南景天叶片抗氧化酶活性及叶绿素含量比较[J].农业环境科学学报,2003,22(3):274-279 [12] 鲁先文,宋小龙,王三,等.重金属铅对小麦叶绿素合成的影响[J].潍坊教育学院学报,2008,21(2):47-48 ,59
[13] Stoynova Bakalova E, Toncheva Panova T. Subcellular adaptation to salinity and irradiance in Dunaliella salina[J].Biol Plant,2003,47,233-236 [14] 刘周莉,何兴元,陈玮.镉胁迫对金银花生理生态特征的影响[J].应用生态学报,2009,20(1):40-44 [15] Asada K.The water-water cycle as an alternative photon and electronsinks\[J].Philosophical Transactions of the Royal Society of London Series B:Biological Sciences,2000,355(1402):1419-1421 [16] 张杰,黄永杰,周守标.铜胁迫下镧对水稻幼苗生长及抗氧化酶活性的影响[J].环境化学,2010,29(5):932-937 [17] 刘筱,易守理,高素萍.铅胁迫对紫萼玉簪幼苗SOD,POD和CAT活性的影响[J].安徽农业科学,2011,39(14):8244-8246 [18] 张太平,潘伟斌.重金属污染来源的玉米的POD对Pb2+胁迫反应[J].华南理工大学学报:自然科学版,2003,31(2):5-8 [19] 蔡建秀,王慧云,王春风.铅胁迫对桐花树幼苗根叶蛋白质及根抗氧化酶活性的影响[J].安徽农业科学,2010,38(6):2903-2905 [20] 仇硕,黄苏珍,王鸿燕.Cd胁迫对黄菖蒲幼苗4种抗氧化酶活性的影响[J].植物资源与环境学报,2008,17(1):28-32 [21] 刘素纯,萧浪涛,廖柏寒,等.铅胁迫对黄瓜幼苗抗氧化酶活性及同工酶的影响[J].应用生态学报,2006,17(2):300-304 [22] Kodela P G,Tindalem D.Acacia dealbata subsp.subalpina(Fabaceae: Mimosodeae),a new subspecies from south-eastern Australia[J].Telopea,2001,9(2): 319-322 [23] 庞欣,王东红,彭安.镧对铅胁迫下小麦幼苗抗氧化酶活性的影响[J].环境化学,2002,21(4):318-324 [24] 尚英男,尹观,倪师军,等.成都市土壤-植物系统铅污染状况初步研究[J].广东微量元素科学,2005,12(3): 8-13 -

计量
- 文章访问数: 1951
- HTML全文浏览数: 1928
- PDF下载数: 625
- 施引文献: 0