妊娠期孕妇尿液中的外源性雌激素水平及其与代谢相关的改变

彭博, 杨凯歌, 胡康蝶, 张舟易, 梁红, 闫超, 吴明媛, 王彦. 妊娠期孕妇尿液中的外源性雌激素水平及其与代谢相关的改变[J]. 生态毒理学报, 2023, 18(2): 269-285. doi: 10.7524/AJE.1673-5897.20220419001
引用本文: 彭博, 杨凯歌, 胡康蝶, 张舟易, 梁红, 闫超, 吴明媛, 王彦. 妊娠期孕妇尿液中的外源性雌激素水平及其与代谢相关的改变[J]. 生态毒理学报, 2023, 18(2): 269-285. doi: 10.7524/AJE.1673-5897.20220419001
Peng Bo, Yang Kaige, Hu Kangdie, Zhang Zhouyi, Liang Hong, Yan Chao, Wu Mingyuan, Wang Yan. Level of Exoestrogens in Urine of Pregnant Women During Pregnancy and Related Metabolic Changes[J]. Asian journal of ecotoxicology, 2023, 18(2): 269-285. doi: 10.7524/AJE.1673-5897.20220419001
Citation: Peng Bo, Yang Kaige, Hu Kangdie, Zhang Zhouyi, Liang Hong, Yan Chao, Wu Mingyuan, Wang Yan. Level of Exoestrogens in Urine of Pregnant Women During Pregnancy and Related Metabolic Changes[J]. Asian journal of ecotoxicology, 2023, 18(2): 269-285. doi: 10.7524/AJE.1673-5897.20220419001

妊娠期孕妇尿液中的外源性雌激素水平及其与代谢相关的改变

    作者简介: 彭博(1993—),男,硕士研究生,研究方向为代谢组学,E-mail: alaric_pb@163.com
    通讯作者: 吴明媛, E-mail: wumingyuan@sjtu.edu.cn 王彦, E-mail: wangyan11@sjtu.edu.cn
  • 基金项目:

    国家自然科学基金面上项目(81874307,21874088);上海市科委“科技创新行动计划”(19142203100,2014220400,19DZ2202200)

  • 中图分类号: X171.5

Level of Exoestrogens in Urine of Pregnant Women During Pregnancy and Related Metabolic Changes

    Corresponding authors: Wu Mingyuan, wumingyuan@sjtu.edu.cn ;  Wang Yan, wangyan11@sjtu.edu.cn
  • Fund Project:
  • 摘要: 外源性雌激素是具有雌激素活性的外源性化学物质,通过模拟或抑制内源性雌激素从而干扰生物体的正常内分泌活动。处于妊娠期的孕妇摄入过量外源性雌激素不仅会对自身产生危害,还会对其胎儿产生不利影响,并且外源性雌激素摄入程度与孕妇代谢过程变化之间具有关联性。本文通过液相色谱-三重四极杆质谱联用技术测定孕妇尿液样本中的8种外源性雌激素含量,并根据样本中的外源性雌激素含量将尿液样本分为外源性雌激素水平不同的3组,在3组间有6种外源性雌激素含量具有显著性差异,其中黄豆苷原、染料木黄酮和肠内酯已被美国环境保护局列入内分泌干扰素审查程序清单中。然后,利用液相色谱-高分辨质谱联用技术分析孕妇尿液样本中的代谢组。通过多维统计分析比较外源性雌激素水平不同的孕妇尿液样本代谢组,同时筛选差异代谢物。根据差异代谢物进行生物信息分析可知,孕妇摄入不同程度外源性雌激素引起的代谢过程变化主要有氨基酸代谢、脂肪酸生物合成、柠檬酸循环和氮代谢过程等。此外,3组样本中表达差异和诊断价值较大的共同差异代谢物有甜菜碱和龙胆酸,它们和体内对抗氧化应激相关。差异代谢物反映了外源性雌激素摄入程度对孕妇代谢过程的影响,可作为生物标志物,并为外源性雌激素作用机制研究提供参考。
  • 加载中
  • 林涵, 蒋学武. 外源性雌激素与男性生殖系统发育异常[J]. 中国男科学杂志, 2004, 18(4): 65-68
    Xu Z X, Liu J, Wu X H, et al. Nonmonotonic responses to low doses of xenoestrogens: A review[J]. Environmental Research, 2017, 155: 199-207
    Singleton D W, Khan S A. Xenoestrogen exposure and mechanisms of endocrine disruption[J]. Frontiers in Bioscience: A Journal and Virtual Library, 2003, 8: s110-s118
    Wang L H, Chen L R, Chen K H. In vitro and vivo identification, metabolism and action of xenoestrogens: An overview[J]. International Journal of Molecular Sciences, 2021, 22(8): 4013
    Hoover R N, Hyer M, Pfeiffer R M, et al. Adverse health outcomes in women exposed in utero to diethylstilbestrol[J]. The New England Journal of Medicine, 2011, 365(14): 1304-1314
    Signorile P G, Spugnini E P, Mita L, et al. Pre-natal exposure of mice to bisphenol A elicits an endometriosis-like phenotype in female offspring[J]. General and Comparative Endocrinology, 2010, 168(3): 318-325
    Missmer S A, Hankinson S E, Spiegelman D, et al. In utero exposures and the incidence of endometriosis[J]. Fertility and Sterility, 2004, 82(6): 1501-1508
    Cai L Y, Izumi S, Suzuki T, et al. Dioxins in ascites and serum of women with endometriosis: A pilot study[J]. Human Reproduction, 2011, 26(1): 117-126
    Li M L, Zhou S, Wu Y L, et al. Prenatal exposure to propylparaben at human-relevant doses accelerates ovarian aging in adult mice[J]. Environmental Pollution, 2021, 285: 117254
    Toppari J, Larsen J C, Christiansen P, et al. Male reproductive health and environmental xenoestrogens[J]. Environmental Health Perspectives, 1996, 104(Suppl 4): 741-803
    Tonini C, Segatto M, Bertoli S, et al. Prenatal exposure to BPA: The effects on hepatic lipid metabolism in male and female rat fetuses[J]. Nutrients, 2021, 13(6): 1970
    Zhou B, Yang P, Deng Y L, et al. Prenatal exposure to bisphenol A and its analogues (bisphenol F and S) and ultrasound parameters of fetal growth[J]. Chemosphere, 2020, 246: 125805
    Yang P, Lin B G, Zhou B, et al. Sex-specific associations of prenatal exposure to bisphenol A and its alternatives with fetal growth parameters and gestational age[J]. Environment International, 2021, 146: 106305
    Minatoya M, Kishi R. A review of recent studies on bisphenol A and phthalate exposures and child neurodevelopment[J]. International Journal of Environmental Research and Public Health, 2021, 18(7): 3585
    Zhao G F, He F, Wu C L, et al. Betaine in inflammation: Mechanistic aspects and applications[J]. Frontiers in Immunology, 2018, 9: 1070
    Abedi F, Razavi B M, Hosseinzadeh H. A review on gentisic acid as a plant derived phenolic acid and metabolite of aspirin: Comprehensive pharmacology, toxicology, and some pharmaceutical aspects[J]. Phytotherapy Research, 2020, 34(4): 729-741
    袁圣武, 黄超, 季晓亚, 等. 环境污染物导致氧化应激的关键信号通路及其检测方法[J]. 生态毒理学报, 2017, 12(1): 25-37

    Yuan S W, Huang C, Ji X Y, et al. Main signaling pathways and detection methods of oxidative stress caused by environmental pollutants[J]. Asian Journal of Ecotoxicology, 2017, 12(1): 25-37(in Chinese)

    Zhu Y, Zhang Y K, Li Y B, et al. Integrative proteomics and metabolomics approach to elucidate metabolic dysfunction induced by silica nanoparticles in hepatocytes[J]. Journal of Hazardous Materials, 2022, 434: 128820
    Bordin D L, Lirussi L, Nilsen H. Cellular response to endogenous DNA damage: DNA base modifications in gene expression regulation[J]. DNA Repair, 2021, 99: 103051
    Kanwar M K, Xie D L, Yang C, et al. Melatonin promotes metabolism of bisphenol A by enhancing glutathione-dependent detoxification in Solanum lycopersicum L.[J]. Journal of Hazardous Materials, 2020, 388: 121727
    Wang H O, Zhao P Q, Huang Q S, et al. Bisphenol-A induces neurodegeneration through disturbance of intracellular calcium homeostasis in human embryonic stem cells-derived cortical neurons[J]. Chemosphere, 2019, 229: 618-630
    Le J H, Lei X C, Ren Y P, et al. Exogenous oestradiol benzoate induces male mice azoospermia through modulation of oxidative stress and testicular metabolic cooperation[J]. Molecular Medicine Reports, 2019, 19(6): 4955-4963
    Gómez-Roig M D, Pascal R, Cahuana M J, et al. Environmental exposure during pregnancy: Influence on prenatal development and early life: A comprehensive review[J]. Fetal Diagnosis and Therapy, 2021, 48(4): 245-257
    Prins J R, Schoots M H, Wessels J I, et al. The influence of the dietary exposome on oxidative stress in pregnancy complications[J]. Molecular Aspects of Medicine, 2022, 87: 101098
    Deng Q Y, Yin N L, Chen Y, et al. Downregulated N-acetylglucosaminyltransferase Ⅲ is involved in attenuating trophoblast migration and invasion under hypoxia–reoxygenation condition[J]. The Journal of Maternal-Fetal & Neonatal Medicine, 2019, 32(14): 2369-2375
    Tang C L, Liang J, Qian J F, et al. Opposing role of JNK-p38 kinase and ERK1/2 in hydrogen peroxide-induced oxidative damage of human trophoblast-like JEG-3 cells[J]. International Journal of Clinical and Experimental Pathology, 2014, 7(3): 959-968
    Curtis S, Jones C J P, Garrod A, et al. Identification of autophagic vacuoles and regulators of autophagy in villous trophoblast from normal term pregnancies and in fetal growth restriction[J]. The Journal of Maternal-Fetal & Neonatal Medicine, 2013, 26(4): 339-346
    Jones M L, Mark P J, Waddell B J. Maternal dietary omega-3 fatty acids and placental function[J]. Reproduction, 2014, 147(5): R143-R152
    Karamali M, Dastyar F, Badakhsh M H, et al. The effects of selenium supplementation on gene expression related to insulin and lipid metabolism, and pregnancy outcomes in patients with gestational diabetes mellitus: A randomized, double-blind, placebo-controlled trial[J]. Biological Trace Element Research, 2020, 195(1): 1-8
    Wu M F, Wu Y, Xu K Z, et al. Protective effects of 1, 25 dihydroxyvitamin D3 against high-glucose-induced damage in human umbilical vein endothelial cells involve activation of Nrf2 antioxidant signaling[J]. Journal of Vascular Research, 2021, 58(4): 267-276
  • 加载中
计量
  • 文章访问数:  1661
  • HTML全文浏览数:  1661
  • PDF下载数:  116
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-04-19
彭博, 杨凯歌, 胡康蝶, 张舟易, 梁红, 闫超, 吴明媛, 王彦. 妊娠期孕妇尿液中的外源性雌激素水平及其与代谢相关的改变[J]. 生态毒理学报, 2023, 18(2): 269-285. doi: 10.7524/AJE.1673-5897.20220419001
引用本文: 彭博, 杨凯歌, 胡康蝶, 张舟易, 梁红, 闫超, 吴明媛, 王彦. 妊娠期孕妇尿液中的外源性雌激素水平及其与代谢相关的改变[J]. 生态毒理学报, 2023, 18(2): 269-285. doi: 10.7524/AJE.1673-5897.20220419001
Peng Bo, Yang Kaige, Hu Kangdie, Zhang Zhouyi, Liang Hong, Yan Chao, Wu Mingyuan, Wang Yan. Level of Exoestrogens in Urine of Pregnant Women During Pregnancy and Related Metabolic Changes[J]. Asian journal of ecotoxicology, 2023, 18(2): 269-285. doi: 10.7524/AJE.1673-5897.20220419001
Citation: Peng Bo, Yang Kaige, Hu Kangdie, Zhang Zhouyi, Liang Hong, Yan Chao, Wu Mingyuan, Wang Yan. Level of Exoestrogens in Urine of Pregnant Women During Pregnancy and Related Metabolic Changes[J]. Asian journal of ecotoxicology, 2023, 18(2): 269-285. doi: 10.7524/AJE.1673-5897.20220419001

妊娠期孕妇尿液中的外源性雌激素水平及其与代谢相关的改变

    通讯作者: 吴明媛, E-mail: wumingyuan@sjtu.edu.cn ;  王彦, E-mail: wangyan11@sjtu.edu.cn
    作者简介: 彭博(1993—),男,硕士研究生,研究方向为代谢组学,E-mail: alaric_pb@163.com
  • 1. 上海交通大学药学院, 上海 200240;
  • 2. 上海市计划生育研究所, 上海 200237
基金项目:

国家自然科学基金面上项目(81874307,21874088);上海市科委“科技创新行动计划”(19142203100,2014220400,19DZ2202200)

摘要: 外源性雌激素是具有雌激素活性的外源性化学物质,通过模拟或抑制内源性雌激素从而干扰生物体的正常内分泌活动。处于妊娠期的孕妇摄入过量外源性雌激素不仅会对自身产生危害,还会对其胎儿产生不利影响,并且外源性雌激素摄入程度与孕妇代谢过程变化之间具有关联性。本文通过液相色谱-三重四极杆质谱联用技术测定孕妇尿液样本中的8种外源性雌激素含量,并根据样本中的外源性雌激素含量将尿液样本分为外源性雌激素水平不同的3组,在3组间有6种外源性雌激素含量具有显著性差异,其中黄豆苷原、染料木黄酮和肠内酯已被美国环境保护局列入内分泌干扰素审查程序清单中。然后,利用液相色谱-高分辨质谱联用技术分析孕妇尿液样本中的代谢组。通过多维统计分析比较外源性雌激素水平不同的孕妇尿液样本代谢组,同时筛选差异代谢物。根据差异代谢物进行生物信息分析可知,孕妇摄入不同程度外源性雌激素引起的代谢过程变化主要有氨基酸代谢、脂肪酸生物合成、柠檬酸循环和氮代谢过程等。此外,3组样本中表达差异和诊断价值较大的共同差异代谢物有甜菜碱和龙胆酸,它们和体内对抗氧化应激相关。差异代谢物反映了外源性雌激素摄入程度对孕妇代谢过程的影响,可作为生物标志物,并为外源性雌激素作用机制研究提供参考。

English Abstract

参考文献 (30)

返回顶部

目录

/

返回文章
返回