慢性亚硝酸盐暴露引起雄性斑马鱼脑神经递质紊乱及行为异常

杨丽萍, 郭红会, 杨慧, 汤蓉, 李大鹏, 李莉. 慢性亚硝酸盐暴露引起雄性斑马鱼脑神经递质紊乱及行为异常[J]. 生态毒理学报, 2022, 17(5): 325-338. doi: 10.7524/AJE.1673-5897.20211026005
引用本文: 杨丽萍, 郭红会, 杨慧, 汤蓉, 李大鹏, 李莉. 慢性亚硝酸盐暴露引起雄性斑马鱼脑神经递质紊乱及行为异常[J]. 生态毒理学报, 2022, 17(5): 325-338. doi: 10.7524/AJE.1673-5897.20211026005
Yang Liping, Guo Honghui, Yang Hui, Tang Rong, Li Dapeng, Li Li. Chronic Nitrite Exposure Causes Brain Neurotransmitter Disorders and Behavioral Abnormalities in Male Zebrafish[J]. Asian journal of ecotoxicology, 2022, 17(5): 325-338. doi: 10.7524/AJE.1673-5897.20211026005
Citation: Yang Liping, Guo Honghui, Yang Hui, Tang Rong, Li Dapeng, Li Li. Chronic Nitrite Exposure Causes Brain Neurotransmitter Disorders and Behavioral Abnormalities in Male Zebrafish[J]. Asian journal of ecotoxicology, 2022, 17(5): 325-338. doi: 10.7524/AJE.1673-5897.20211026005

慢性亚硝酸盐暴露引起雄性斑马鱼脑神经递质紊乱及行为异常

    作者简介: 杨丽萍(1996-),女,硕士,研究方向为生态毒理学,E-mail:yanglpyang@foxmail.com
    通讯作者: 李莉, E-mail: foreverlili78@mail.hzau.edu.cn
  • 基金项目:

    国家重点研发计划资助课题(2019YFD0900303);国家自然科学基金资助项目(32071621);农业部现代农业产业技术体系(CARS-45-24)

  • 中图分类号: X171.5

Chronic Nitrite Exposure Causes Brain Neurotransmitter Disorders and Behavioral Abnormalities in Male Zebrafish

    Corresponding author: Li Li, foreverlili78@mail.hzau.edu.cn
  • Fund Project:
  • 摘要: 为了探究亚硝酸盐慢性暴露致斑马鱼神经毒性影响及其可能的作用机制,本研究将成年雄性斑马鱼(Danio rerio)浸泡在0、0.2、2和20 mg·L-1的亚硝酸盐养殖环境中30 d,暴露期结束后观察并记录斑马鱼的神经行为学变化和脑组织病理学变化,并测定脑神经递质系统相关指标以及氧化-抗氧化系统参数变化。研究结果显示:水环境中亚硝酸盐的慢性暴露导致鱼体血浆中高铁血红蛋白的累积,进而诱发组织缺氧。而斑马鱼脑部丙二醛(malondialdehyde,MDA)含量的剂量依赖性增加和总抗氧化能力(total antioxidant capacity,T-AOC)的下降,表明亚硝酸盐的暴露破坏了脑组织抗氧化防御系统与活性氧之间的平衡,造成了氧化应激。超氧化物歧化酶(superoxide dismutase,SOD)活性的降低以及相关基因Cu/ZnsodMnsod mRNA表达水平的下降进一步证实,亚硝酸盐暴露降低了斑马鱼脑的抗氧化能力。同时,检测到亚硝酸盐暴露诱导斑马鱼的行为出现异常,包括运动能力下降、对同类鱼群聚集的倾向性降低以及学习和记忆能力减弱。脑组织病理学结果显示,随着亚硝酸盐暴露浓度的升高,中脑小球周灰质带的神经细胞数量减少,并在20 mg·L-1亚硝酸盐浓度组中出现血栓。在测定神经递质系统相关指标时发现,多巴胺(dopamine,DA)含量下降,DA代谢相关基因(dat、drd1bdrd4a)、胆碱能系统相关基因(ache、chrna4bchrna7)、γ-氨基丁酸(γ-aminobutyric acid,GABA)系统中的gabra1gat1以及5-羟色胺受体家族基因(htr1aa、htr1abhtr2a)的mRNA转录水平均有不同程度的下调,表明亚硝酸盐通过抑制神经递质的合成、转运及受体的功能导致信息传递受阻,最终导致运动、学习和记忆能力受损。综上所述,亚硝酸盐慢性暴露诱导氧化应激发生,使机体抗氧化能力下降、脑组织结构损伤,进而造成神经递质系统功能紊乱及行为异常。
  • 加载中
  • Jensen F B. Nitrite disrupts multiple physiological functions in aquatic animals[J]. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology, 2003, 135(1):9-24
    邓熙, 林秋奇, 顾继光. 广州市饮用水源中硝酸盐亚硝酸盐含量与癌症死亡率联系[J]. 生态科学, 2004, 23(1):38-41

    Deng X, Lin Q Q, Gu J G. Correlation between concentration of nitrate, nitrite in drinking water source and cancer mortality for Guangzhou City[J]. Ecologic Science, 2004, 23(1):38-41(in Chinese)

    易智勇, 左笑丛, 彭广泽, 等. 亚硝酸盐食物中毒的文献分析[J]. 中国公共卫生管理, 2006, 22(6):524-527
    李智文, 任爱国, 张乐, 等. 中国2003年出生缺陷高发区和低发区重大体表畸形患病率监测[J]. 中华流行病学杂志, 2005, 26(4):252-257

    Li Z W, Ren A G, Zhang L, et al. Prevalence of major external birth defects in high and low risk areas in China, 2003[J]. Chinese Journal of Epidemiology, 2005, 26(4):252-257(in Chinese)

    王东辉, 韩桂珍, 李鑫, 等. 亚硝酸钠中毒所致神经系统损害的治疗[J]. 吉林大学学报(医学版), 2004, 30(2):168
    Ribeiro M C, Bezerra T D S, Soares A C, et al. Hippocampal and cerebellar histological changes and their behavioural repercussions caused by brain ischaemic hypoxia experimentally induced by sodium nitrite[J]. Behavioural Brain Research, 2017, 332:223-232
    Chen Y F, Cui Z J, Wang L, et al. The impairment of learning and memory and synaptic loss in mouse after chronic nitrite exposure[J]. Environmental Toxicology, 2016, 31(12):1720-1730
    王久涛, 张伟, 安磊, 等. 亚硝酸盐中毒抑制小鼠成体神经发生[J]. 中国兽医学报, 2014, 34(4):641-646

    Wang J T, Zhang W, An L, et al. Nitrite poisoning inhibits the adult neurogenesis in mice[J]. Chinese Journal of Veterinary Science, 2014, 34(4):641-646(in Chinese)

    李瑞玲, 陈永芳, 王颖, 等. 孕期亚硝酸盐暴露对子鼠视皮质突触改变的影响[J]. 解剖学报, 2015, 46(6):729-736

    Li R L, Chen Y F, Wang Y, et al. Synapse loss in visual cortex of mouse after prenatal nitrite exposure[J]. Acta Anatomica Sinica, 2015, 46(6):729-736(in Chinese)

    汪家鑫, 张钊, 胡盼, 等. 亚硝酸氮对红鳍东方鲀的毒性效应[J]. 广东海洋大学学报, 2013, 33(6):52-56

    Wang J X, Zhang Z, Hu P, et al. Effect of nitrite on hepatic antioxidant enzymes and acute toxicity in juvenile Takifugu rubripe [J]. Journal of Guangdong Ocean University, 2013, 33(6):52-56(in Chinese)

    Das P C, Ayyappan S, Das B K, et al. Nitrite toxicity in Indian major carps:Sublethal effect on selected enzymes in fingerlings of Catla catla, Labeo rohita and Cirrhinus mrigala [J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology:CBP, 2004, 138(1):3-10
    Jannat M, Fatimah R, Kishida M. Nitrate (NO3-) and nitrite (NO2-) are endocrine disruptors to downregulate expression of tyrosine hydroxylase and motor behavior through conversion to nitric oxide in early development of zebrafish[J]. Biochemical and Biophysical Research Communications, 2014, 452(3):608-613
    García-Jaramillo M, Beaver L M, Truong L, et al. Nitrate and nitrite exposure leads to mild anxiogenic-like behavior and alters brain metabolomic profile in zebrafish[J]. PLoS One, 2020, 15(12):e0240070
    高明辉, 马立保, 葛立安, 等. 亚硝酸盐在水生动物体内的吸收机制及蓄积的影响因素[J]. 南方水产, 2008, 4(4):73-79

    Gao M H, Ma L B, Ge L, et al. Nitrite uptake mechanism and the influencing factors of accumulation in aquatic animals[J]. South China Fisheries Science, 2008, 4(4):73-79(in Chinese)

    Kroupova H, Machova J, Svobodova Z. Nitrite influence on fish:A review[J]. Veterinární Medicína, 2012, 50(11):461-471
    Voslářová E, Pištěková V, Svobodová Z. Nitrite toxicity to Danio rerio:Effects of fish age and chloride concentrations[J]. Acta Veterinaria Brno, 2006, 75(1):107-113
    国家标准化管理委员会, 国家质量监督检验检疫总局. 化学品鱼类延长毒性14天试验:GB/T 21808-2008[S]. 北京:国家标准化管理委员会, 国家质量监督检验检疫总局, 2008
    Salahinejad A, Naderi M, Attaran A, et al. Effects of chronic exposure to bisphenol-S on social behaviors in adult zebrafish:Disruption of the neuropeptide signaling pathways in the brain[J]. Environmental Pollution, 2020, 262:113992
    朱小乔, 唐天乐, 彭翔, 等. 双酚AF暴露降低斑马鱼学习记忆能力并影响神经系统相关基因表达[J]. 生态毒理学报, 2017, 12(1):119-126

    Zhu X Q, Tang T L, Peng X, et al. Bisphenol AF exposure reduces learning and memory ability and influences expression of nervous system genes in zebrafish[J]. Asian Journal of Ecotoxicology, 2017, 12(1):119-126(in Chinese)

    陈金. 纳米氧化铝胚胎暴露致成年斑马鱼的学习和记忆能力进行性损伤[D]. 太原:山西医科大学, 2020:10-11 Chen J. Progressive impairment of learning and memory in adult zebrafish treated by Al2O3

    nanoparticles when in embryos[D]. Taiyuan:Shanxi Medical University, 2020:10-11(in Chinese)

    Lin W, Guo H H, Wang L K, et al. Parental transfer of microcystin-LR-induced innate immune dysfunction of zebrafish:A cross-generational study[J]. Environmental Science & Technology, 2020, 54(2):1014-1023
    Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25(4):402-408
    Jensen F B. Nitrite disrupts multiple physiological functions in aquatic animals[J]. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology, 2003, 135(1):9-24
    赵丹. 急、慢性缺氧对斑马鱼幼鱼神经系统损伤机制的初步研究[D]. 广州:南方医科大学, 2014:36-37 Zhao D. Pilot study of mechanism of nervous system damage of zebrafish larvae caused by acute/chronic hypoxia[D]. Guangzhou:Southern Medical University, 2014:36

    -37(in Chinese)

    Ali E H A, Ahmed-Farid O A, Osman A A E. Bone marrow-derived mesenchymal stem cells ameliorate sodium nitrite-induced hypoxic brain injury in a rat model[J]. Neural Regeneration Research, 2017, 12(12):1990-1999
    Ghiselli A, Serafini M, Natella F, et al. Total antioxidant capacity as a tool to assess redox status:Critical view and experimental data[J]. Free Radical Biology & Medicine, 2000, 29(11):1106-1114
    Praticò D, Clark C M, Liun F, et al. Increase of brain oxidative stress in mild cognitive impairment:A possible predictor of Alzheimer disease[J]. Archives of Neurology, 2002, 59(6):972-976
    Dias V, Junn E, Mouradian M M. The role of oxidative stress in Parkinson's disease[J]. Journal of Parkinson's Disease, 2013, 3(4):461-491
    邹苏琪, 殷梧, 杨昱鹏, 等. 斑马鱼行为学实验在神经科学中的应用[J]. 生物化学与生物物理进展, 2009, 36(1):5-12

    Zou S Q, Yin W, Yang Y P, et al. The ethology application of zebrafish in neuroscience[J]. Progress in Biochemistry and Biophysics, 2009, 36(1):5-12(in Chinese)

    李小泉, 杜久林. 幼年斑马鱼的视觉系统与捕食行为[J]. 遗传, 2013, 35(4):368-376

    Li X Q, Du J L. Visual system and prey capture behavior of larval zebrafish[J]. Hereditas, 2013, 35(4):368-376(in Chinese)

    Gupta N, Zhao Y Y, Evans C E. The stimulation of thrombosis by hypoxia[J]. Thrombosis Research, 2019, 181:77-83
    Sheng J, Meng Q F, Yang Z Z, et al. Identification of cryptotanshinone from Tongmai to inhibit thrombosis in zebrafish via regulating oxidative stress and coagulation cascade[J]. Phytomedicine, 2020, 76:153263
    Liu K S, Fetcho J R. Laser ablations reveal functional relationships of segmental hindbrain neurons in zebrafish[J]. Neuron, 1999, 23(2):325-335
    Liao G X, Li R, Chen X H, et al. Sodium valproate prevents radiation-induced injury in hippocampal neurons via activation of the Nrf2/HO-1 pathway[J]. Neuroscience, 2016, 331:40-51
    陈思杰, 彭刚. 斑马鱼模式动物在神经功能环路研究中的应用[J]. 心理科学进展, 2013, 21(6):1014-1019

    Chen S J, Peng G. Zebrafish model and physiological psychology research[J]. Advances in Psychological Science, 2013, 21(6):1014-1019(in Chinese)

    Engeszer R E, Ryan M J, Parichy D M. Learned social preference in zebrafish[J]. Current Biology, 2004, 14(10):881-884
    Miller N, Gerlai R. Quantification of shoaling behaviour in zebrafish (Danio rerio)[J]. Behavioural Brain Research, 2007, 184(2):157-166
    Wenk G L. Assessment of spatialmemor using the T maze[J]. Current Protocols in Neuroscience, 2001(8):8.5B
    Roy T, Bhat A. Social learning in a maze? Contrasting individual performance among wild zebrafish when associated with trained and naive conspecifics[J]. Behavioural Processes, 2017, 144:51-57
    Schultz W. Multiple functions of dopamine neurons[J]. F1000 Biology Reports, 2010, 2:2
    Kim J H, Auerbach J M, Rodríguez-Gómez J A, et al. Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease[J]. Nature, 2002, 418(6893):50-56
    Behra M, Cousin X, Bertrand C, et al. Acetylcholinesterase is required for neuronal and muscular development in the zebrafish embryo[J]. Nature Neuroscience, 2002, 5(2):111-118
    Hasselmo M E. The role of acetylcholine in learning and memory[J]. Current Opinion in Neurobiology, 2006, 16(6):710-715
    Kang T C, Kim H S, Seo M O, et al. The changes in the expressions of gamma-aminobutyric acid transporters in the gerbil hippocampal complex following spontaneous seizure[J]. Neuroscience Letters, 2001, 310(1):29-32
    Sajovic P, Levinthal C. Inhibitory mechanism in zebrafish optic tectum:Visual response properties of tectal cells altered by picrotoxin and bicuculline[J]. Brain Research, 1983, 271(2):227-240
    Morteza Z, Vahhab B, Hossein J. Effects of central histamine receptors blockade on GABA(A) agonist-induced food intake in broiler cockerels[J]. Pakistan Journal of Biological Sciences:PJBS, 2008, 11(3):416-421
    Jacobs B L, Fornal C A. Serotonin and motor activity[J]. Current Opinion in Neurobiology, 1997, 7(6):820-825
    Buhot M C. Serotonin receptors in cognitive behaviors[J]. Current Opinion in Neurobiology, 1997, 7(2):243-254
    Buhot M C, Martin S, Segu L. Role of serotonin in memory impairment[J]. Annals of Medicine, 2000, 32(3):210-221
  • 加载中
计量
  • 文章访问数:  2912
  • HTML全文浏览数:  2912
  • PDF下载数:  110
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-10-26
杨丽萍, 郭红会, 杨慧, 汤蓉, 李大鹏, 李莉. 慢性亚硝酸盐暴露引起雄性斑马鱼脑神经递质紊乱及行为异常[J]. 生态毒理学报, 2022, 17(5): 325-338. doi: 10.7524/AJE.1673-5897.20211026005
引用本文: 杨丽萍, 郭红会, 杨慧, 汤蓉, 李大鹏, 李莉. 慢性亚硝酸盐暴露引起雄性斑马鱼脑神经递质紊乱及行为异常[J]. 生态毒理学报, 2022, 17(5): 325-338. doi: 10.7524/AJE.1673-5897.20211026005
Yang Liping, Guo Honghui, Yang Hui, Tang Rong, Li Dapeng, Li Li. Chronic Nitrite Exposure Causes Brain Neurotransmitter Disorders and Behavioral Abnormalities in Male Zebrafish[J]. Asian journal of ecotoxicology, 2022, 17(5): 325-338. doi: 10.7524/AJE.1673-5897.20211026005
Citation: Yang Liping, Guo Honghui, Yang Hui, Tang Rong, Li Dapeng, Li Li. Chronic Nitrite Exposure Causes Brain Neurotransmitter Disorders and Behavioral Abnormalities in Male Zebrafish[J]. Asian journal of ecotoxicology, 2022, 17(5): 325-338. doi: 10.7524/AJE.1673-5897.20211026005

慢性亚硝酸盐暴露引起雄性斑马鱼脑神经递质紊乱及行为异常

    通讯作者: 李莉, E-mail: foreverlili78@mail.hzau.edu.cn
    作者简介: 杨丽萍(1996-),女,硕士,研究方向为生态毒理学,E-mail:yanglpyang@foxmail.com
  • 1. 华中农业大学水产学院, 武汉 430070;
  • 2. 长江经济带大宗水生生物产业绿色发展教育部工程研究中心, 武汉 430070;
  • 3. 池塘健康养殖湖北省工程实验室, 武汉 430070;
  • 4. 淡水水产健康养殖湖北省协同创新中心, 武汉 430070
基金项目:

国家重点研发计划资助课题(2019YFD0900303);国家自然科学基金资助项目(32071621);农业部现代农业产业技术体系(CARS-45-24)

摘要: 为了探究亚硝酸盐慢性暴露致斑马鱼神经毒性影响及其可能的作用机制,本研究将成年雄性斑马鱼(Danio rerio)浸泡在0、0.2、2和20 mg·L-1的亚硝酸盐养殖环境中30 d,暴露期结束后观察并记录斑马鱼的神经行为学变化和脑组织病理学变化,并测定脑神经递质系统相关指标以及氧化-抗氧化系统参数变化。研究结果显示:水环境中亚硝酸盐的慢性暴露导致鱼体血浆中高铁血红蛋白的累积,进而诱发组织缺氧。而斑马鱼脑部丙二醛(malondialdehyde,MDA)含量的剂量依赖性增加和总抗氧化能力(total antioxidant capacity,T-AOC)的下降,表明亚硝酸盐的暴露破坏了脑组织抗氧化防御系统与活性氧之间的平衡,造成了氧化应激。超氧化物歧化酶(superoxide dismutase,SOD)活性的降低以及相关基因Cu/ZnsodMnsod mRNA表达水平的下降进一步证实,亚硝酸盐暴露降低了斑马鱼脑的抗氧化能力。同时,检测到亚硝酸盐暴露诱导斑马鱼的行为出现异常,包括运动能力下降、对同类鱼群聚集的倾向性降低以及学习和记忆能力减弱。脑组织病理学结果显示,随着亚硝酸盐暴露浓度的升高,中脑小球周灰质带的神经细胞数量减少,并在20 mg·L-1亚硝酸盐浓度组中出现血栓。在测定神经递质系统相关指标时发现,多巴胺(dopamine,DA)含量下降,DA代谢相关基因(dat、drd1bdrd4a)、胆碱能系统相关基因(ache、chrna4bchrna7)、γ-氨基丁酸(γ-aminobutyric acid,GABA)系统中的gabra1gat1以及5-羟色胺受体家族基因(htr1aa、htr1abhtr2a)的mRNA转录水平均有不同程度的下调,表明亚硝酸盐通过抑制神经递质的合成、转运及受体的功能导致信息传递受阻,最终导致运动、学习和记忆能力受损。综上所述,亚硝酸盐慢性暴露诱导氧化应激发生,使机体抗氧化能力下降、脑组织结构损伤,进而造成神经递质系统功能紊乱及行为异常。

English Abstract

参考文献 (49)

返回顶部

目录

/

返回文章
返回