不同材质微塑料对三氯生的吸附及其在斑马鱼体内累积分布的影响

盛诚, 王馨颖, 易珍, 张宴, 任洪强. 不同材质微塑料对三氯生的吸附及其在斑马鱼体内累积分布的影响[J]. 生态毒理学报, 2020, 15(5): 108-117. doi: 10.7524/AJE.1673-5897.20200504001
引用本文: 盛诚, 王馨颖, 易珍, 张宴, 任洪强. 不同材质微塑料对三氯生的吸附及其在斑马鱼体内累积分布的影响[J]. 生态毒理学报, 2020, 15(5): 108-117. doi: 10.7524/AJE.1673-5897.20200504001
Sheng Cheng, Wang Xinying, Yi Zhen, Zhang Yan, Ren Hongqiang. The Adsorption of Tricolsan by Microplastics of Different Polymers and Its Effect on Tricolsan Accumulation in Zebrafish[J]. Asian journal of ecotoxicology, 2020, 15(5): 108-117. doi: 10.7524/AJE.1673-5897.20200504001
Citation: Sheng Cheng, Wang Xinying, Yi Zhen, Zhang Yan, Ren Hongqiang. The Adsorption of Tricolsan by Microplastics of Different Polymers and Its Effect on Tricolsan Accumulation in Zebrafish[J]. Asian journal of ecotoxicology, 2020, 15(5): 108-117. doi: 10.7524/AJE.1673-5897.20200504001

不同材质微塑料对三氯生的吸附及其在斑马鱼体内累积分布的影响

    作者简介: 盛诚(1995-),女,硕士研究生,研究方向为水环境生态风险控制,E-mail:15670521642@163.com
    通讯作者: 张宴, E-mail: yanzhang@nju.edu.cn
  • 基金项目:

    国家自然基金面上项目(21777068)

  • 中图分类号: X171.5

The Adsorption of Tricolsan by Microplastics of Different Polymers and Its Effect on Tricolsan Accumulation in Zebrafish

    Corresponding author: Zhang Yan, yanzhang@nju.edu.cn
  • Fund Project:
  • 摘要: 微塑料(MPs)通过吸附作用不仅可以影响有机污染物在环境中的迁移、转化和归趋,甚至会影响污染物在生物体内的累积分布和毒性效应。为考察MPs和三氯生(TCS)等在环境中复合污染的生态和健康风险,以斑马鱼为模式生物,以聚乙烯(PE)、聚丙烯(PP)和聚氯乙烯(PVC)材质MPs为目标MPs,TCS为目标污染物,开展了不同材质MPs对TCS的吸附和生物累积实验。吸附实验结果表明,3种MPs对TCS的吸附能力依次为:PP>PE≈PVC。MPs对TCS的吸附机制主要为表面吸附和外液膜扩散作用,吸附过程为多层吸附。累积分布实验结果表明,单独TCS暴露条件下,TCS在肠道、肝脏、脑、性腺和剩余鱼体中的累积量分别为191.56、63.92、21.32、25.19和11.59 μg·g-1。MPs的存在显著提高了TCS在斑马鱼肠道和肝脏中的累积量,与TCS组相比,TCS+PP组、TCS+PE组和TCS+PVC组中肠道TCS的累积量分别提高了51.9%、12.7%和38.6%(P<0.05),肝脏TCS的累积量分别提高了152.9%、70.9%和118.4%(P<0.05)。此外,TCS累积量与MPs的吸附能力呈正相关,PP+TCS组肠道和肝脏中TCS累积量显著高于TCS+PE组和TCS+PVC组(P<0.05)。本文详细探究了不同材质MPs对TCS的吸附和生物累积的影响,研究结果可为MPs和有机污染物复合污染的生态和健康风险评价提供基础数据。
  • 加载中
  • Ivleva N P, Wiesheu A C, Niessner R. Microplastic inaquatic ecosystems[J]. Angewandte Chemie International Edition, 2017, 56(7):1720-1739
    Xu S, Ma J, Ji R, et al. Microplastics in aquatic environments:Occurrence, accumulation, and biological effects[J]. Science of the Total Environment, 2020, 703:134699-1347103
    Thompson R C, Moore C J, Vom Saal F S, et al. Plastics, the environment and human health:Current consensus and future trends[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2009, 364(1526):2153-2166
    Carr S A, Liu J, Tesoro A G. Transport and fate of microplastic particles in wastewater treatment plants[J]. Water Research, 2016, 91:174-182
    Browne M A, Galloway T, Thompson R. Microplastic-An emerging contaminant of potential concern?[J]. Integrated Environmental Assessment and Management, 2007, 3(4):559-561
    Wang F, Wong C S, Chen D, et al. Interaction of toxic chemicals with microplastics:A critical review[J]. Water Research, 2018, 139:208-219
    Gall S C, Thompson R C. The impact of debris on marine life[J]. Marine Pollution Bulletin, 2015, 92(1):170-179
    Lu Y, Zhang Y, Deng Y, et al. Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver[J]. Environmental Science & Technology, 2016, 50(7):4054-4060
    Qiao R, Sheng C, Lu Y, et al. Microplastics induce intestinal inflammation, oxidative stress, and disorders of metabolome and microbiome in zebrafish[J]. Science of the Total Environment, 2019, 662:246-253
    Browne M A, Niven S J, Galloway T S, et al. Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity[J]. Current Biology, 2013, 23(23):2388-2392
    徐擎擎, 张哿, 邹亚丹, 等. 微塑料与有机污染物的相互作用研究进展[J]. 生态毒理学报, 2018, 13(1):40-49

    Xu Q Q, Zhang G, Zou Y D, et al. Interactions between microplastics and organic pollutants:Current status and knowledge gaps[J]. Asian Journal of Ecotoxicology, 2018, 13(1):40-49(in Chinese)

    Ziccardi L M, Edgington A, Hentz K, et al. Microplastics as vectors for bioaccumulation of hydrophobic organic chemicals in the marine environment:A state-of-the-science review[J]. Environmental Toxicology and Chemistry, 2016, 35(7):1667-1676
    Xin X, Huang G, An C, et al. Insights into long-term toxicity of triclosan to freshwater green algae in Lake Erie[J]. Environmental Science & Technology, 2019, 53(4):2189-2198
    Sabaliunas D, Webb S F, Hauk A, et al. Environmental fate of triclosan in the River Aire Basin, UK[J]. Water Research, 2003, 37(13):3145-3154
    Kolpin D W, Furlong E T, Meyer M T, et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999-2000:A national reconnaissance[J]. Environmental Science & Technology, 2002, 36(6):1202-1211
    Chalew T E A, Halden R U. Environmental exposure of aquatic and terrestrial biota to triclosan and triclocarban[J]. Journal of the American Water Resources Association, 2009, 45(1):4-13
    Peng X, Yu Y, Tang C, et al. Occurrence of steroid estrogens, endocrine-disrupting phenols, and acid pharmaceutical residues in urban riverine water of the Pearl River Delta, South China[J]. Science of the Total Environment, 2008, 397(1-3):158-166
    姚思睿, 魏然, 倪进治, 等. 福州内河沉积物中三氯生和甲基三氯生的含量、来源及其生态风险[J]. 环境科学学报, 2015, 35(8):226-232

    Yao S R, Wei R, Ni J Z, et al. Concentrations, sources and ecological risks of triclosan and methyl-triclosan in inland river sediments of Fuzhou City[J]. Acta Scientiae Circumstantiae, 2015, 35(8):226-232(in Chinese)

    Ma J, Zhao J, Zhu Z, et al. Effect of microplastic size on the adsorption behavior and mechanism of triclosan on polyvinyl chloride[J]. Environmental Pollution, 2019, 254(Pt B):113104
    Wang W, Wang J. Comparative evaluation of sorption kinetics and isotherms of pyrene onto microplastics[J]. Chemosphere, 2018, 193:567-573
    Teuten E L, Saquing J M, Knappe D R, et al. Transport and release of chemicals from plastics to the environment and to wildlife[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2009, 364(1526):2027-2045
    Dijkstra J A, Buckman K L, Ward D, et al. Experimental and natural warming elevates mercury concentrations in estuarine fish[J]. PLoS One, 2013, 8(3):e58401-e58409
    Moss T, Howes D, Williams F M. Percutaneous penetration and dermal metabolism of triclosan (2,4,4'-trichloro-2'-hydroxydiphenyl ether)[J]. Food and Chemical Toxicology, 2000, 38(4):361-370
    Dhillon G S, Kaur S, Pulicharla R, et al. Triclosan:Current status, occurrence, environmental risks and bioaccumulation potential[J]. International Journal of Environmental Research and Public Health, 2015, 12(5):5657-5684
    Kolandhasamy P, Su L, Li J, et al. Adherence of microplastics to soft tissue of mussels:A novel way to uptake microplastics beyond ingestion[J]. Science of the Total Environment, 2018, 610-611:635-640
  • 加载中
计量
  • 文章访问数:  2493
  • HTML全文浏览数:  2493
  • PDF下载数:  161
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-05-04
盛诚, 王馨颖, 易珍, 张宴, 任洪强. 不同材质微塑料对三氯生的吸附及其在斑马鱼体内累积分布的影响[J]. 生态毒理学报, 2020, 15(5): 108-117. doi: 10.7524/AJE.1673-5897.20200504001
引用本文: 盛诚, 王馨颖, 易珍, 张宴, 任洪强. 不同材质微塑料对三氯生的吸附及其在斑马鱼体内累积分布的影响[J]. 生态毒理学报, 2020, 15(5): 108-117. doi: 10.7524/AJE.1673-5897.20200504001
Sheng Cheng, Wang Xinying, Yi Zhen, Zhang Yan, Ren Hongqiang. The Adsorption of Tricolsan by Microplastics of Different Polymers and Its Effect on Tricolsan Accumulation in Zebrafish[J]. Asian journal of ecotoxicology, 2020, 15(5): 108-117. doi: 10.7524/AJE.1673-5897.20200504001
Citation: Sheng Cheng, Wang Xinying, Yi Zhen, Zhang Yan, Ren Hongqiang. The Adsorption of Tricolsan by Microplastics of Different Polymers and Its Effect on Tricolsan Accumulation in Zebrafish[J]. Asian journal of ecotoxicology, 2020, 15(5): 108-117. doi: 10.7524/AJE.1673-5897.20200504001

不同材质微塑料对三氯生的吸附及其在斑马鱼体内累积分布的影响

    通讯作者: 张宴, E-mail: yanzhang@nju.edu.cn
    作者简介: 盛诚(1995-),女,硕士研究生,研究方向为水环境生态风险控制,E-mail:15670521642@163.com
  • 污染控制与资源化研究国家重点实验室, 南京大学环境学院, 南京 210046
基金项目:

国家自然基金面上项目(21777068)

摘要: 微塑料(MPs)通过吸附作用不仅可以影响有机污染物在环境中的迁移、转化和归趋,甚至会影响污染物在生物体内的累积分布和毒性效应。为考察MPs和三氯生(TCS)等在环境中复合污染的生态和健康风险,以斑马鱼为模式生物,以聚乙烯(PE)、聚丙烯(PP)和聚氯乙烯(PVC)材质MPs为目标MPs,TCS为目标污染物,开展了不同材质MPs对TCS的吸附和生物累积实验。吸附实验结果表明,3种MPs对TCS的吸附能力依次为:PP>PE≈PVC。MPs对TCS的吸附机制主要为表面吸附和外液膜扩散作用,吸附过程为多层吸附。累积分布实验结果表明,单独TCS暴露条件下,TCS在肠道、肝脏、脑、性腺和剩余鱼体中的累积量分别为191.56、63.92、21.32、25.19和11.59 μg·g-1。MPs的存在显著提高了TCS在斑马鱼肠道和肝脏中的累积量,与TCS组相比,TCS+PP组、TCS+PE组和TCS+PVC组中肠道TCS的累积量分别提高了51.9%、12.7%和38.6%(P<0.05),肝脏TCS的累积量分别提高了152.9%、70.9%和118.4%(P<0.05)。此外,TCS累积量与MPs的吸附能力呈正相关,PP+TCS组肠道和肝脏中TCS累积量显著高于TCS+PE组和TCS+PVC组(P<0.05)。本文详细探究了不同材质MPs对TCS的吸附和生物累积的影响,研究结果可为MPs和有机污染物复合污染的生态和健康风险评价提供基础数据。

English Abstract

参考文献 (25)

返回顶部

目录

/

返回文章
返回