磷酸三苯酯经miRNA介导的人肝细胞脂类代谢干扰作用

何春桃, 严骁, 付惠玲, 庄僖, 郑晶, 麦碧娴, 杨中艺, 于云江. 磷酸三苯酯经miRNA介导的人肝细胞脂类代谢干扰作用[J]. 生态毒理学报, 2021, 16(2): 140-150. doi: 10.7524/AJE.1673-5897.20200306001
引用本文: 何春桃, 严骁, 付惠玲, 庄僖, 郑晶, 麦碧娴, 杨中艺, 于云江. 磷酸三苯酯经miRNA介导的人肝细胞脂类代谢干扰作用[J]. 生态毒理学报, 2021, 16(2): 140-150. doi: 10.7524/AJE.1673-5897.20200306001
He Chuntao, Yan Xiao, Fu Huiling, Zhuang Xi, Zheng Jing, Mai Bixian, Yang, Yu Yunjiang. TPhP Induced Lipid Metabolism Disruption Mediated by miRNA in Hepatocyte[J]. Asian journal of ecotoxicology, 2021, 16(2): 140-150. doi: 10.7524/AJE.1673-5897.20200306001
Citation: He Chuntao, Yan Xiao, Fu Huiling, Zhuang Xi, Zheng Jing, Mai Bixian, Yang, Yu Yunjiang. TPhP Induced Lipid Metabolism Disruption Mediated by miRNA in Hepatocyte[J]. Asian journal of ecotoxicology, 2021, 16(2): 140-150. doi: 10.7524/AJE.1673-5897.20200306001

磷酸三苯酯经miRNA介导的人肝细胞脂类代谢干扰作用

    作者简介: 何春桃(1989-),女,副教授,研究方向为生态学,E-mail:hecht3@mail.sysu.edu.cn
    通讯作者: 郑晶, E-mail: zhengjing@scies.org
  • 基金项目:

    国家自然科学基金青年基金资助项目(21707177);广州市科技计划项目(201804010074);国家自然科学基金重点项目(41931290)

  • 中图分类号: X171.5

TPhP Induced Lipid Metabolism Disruption Mediated by miRNA in Hepatocyte

    Corresponding author: Zheng Jing, zhengjing@scies.org
  • Fund Project:
  • 摘要: 磷酸三苯酯(triphenyl phosphate,TPhP)是近年来广泛应用于电子产品的磷系阻燃剂,其脂类代谢干扰作用受到广泛关注,而microRNAs(miRNAs)在TPhP脂类代谢干扰过程中的调控作用仍鲜有报道。本研究通过探讨TPhP暴露条件下人肝细胞的细胞活性、TPhP清除速率与miRNAs表达调控特征,并与已获得转录组数据联合分析,明确TPhP经miRNA介导的脂类代谢干扰作用。在不同浓度TPhP暴露处理48 h后,人肝细胞的细胞活性随着暴露浓度呈先上升后下降的趋势,半数致死效应剂量为46.7 μmol·L-1。在5 μg·mL-1的TPhP暴露3 h和48 h后,TPhP的清除率分别为73.9%和85.1%。人肝细胞多个miRNAs表达差异显著,差异表达miRNAs所调控的靶基因主要参与代谢、脂肪酸合成、类固醇合成及癌症相关通路。通过转录组关联分析,差异表达miR-34c-5p、miR-301a-5p和miR-7等多个miRNAs对脂类代谢相关通路的关键基因具有调控作用,并构成miRNA-mRNA调控网络。综上所述,人肝细胞对TPhP具有较高的清除效率,TPhP暴露诱导miRNA差异表达所介导的脂类代谢干扰作用是TPhP对人肝细胞的主要毒性作用,miR-7和miR-4484等miRNAs能作为TPhP胁迫下脂类代谢干扰作用的潜在生物指示物。
  • 加载中
  • He C T, Zheng J, Qiao L, et al. Occurrence of organophosphorus flame retardants in indoor dust in multiple microenvironments of Southern China and implications for human exposure[J]. Chemosphere, 2015, 133:47-52
    Tajima S, Araki A, Kawai T, et al. Detection and intake assessment of organophosphate flame retardants in house dust in Japanese dwellings[J]. Science of the Total Environment, 2014, 478:190-199
    Qiao L, Zheng X B, Zheng J, et al. Analysis of human hair to assess exposure to organophosphate flame retardants:Influence of hair segments and gender differences[J]. Environmental Research, 2016, 148:177-183
    彭涛, 王思思, 任琳, 等. 磷酸三苯酯对斑马鱼早期生命阶段的神经毒性研究[J]. 生态毒理学报, 2016, 11(1):254-260

    Peng T, Wang S S, Ren L, et al. Neurotoxicity of triphenyl phosphate on the early life stages of zebrafish[J]. Asian Journal of Ecotoxicology, 2016, 11(1):254-260(in Chinese)

    张杏丽, 邹威, 周启星. 基于代谢组学技术分析磷酸三苯酯诱导斑马鱼胚胎发育毒性的分子机制[J]. 生态毒理学报, 2019, 14(3):79-89

    Zhang X L, Zou W, Zhou Q X. Molecular mechanisms of developmental toxicity of triphenyl phosphate on zebrafish embryo revealed by metabonomics[J]. Asian Journal of Ecotoxicology, 2019, 14(3):79-89(in Chinese)

    Pillai H K, Fang M L, Beglov D, et al. Ligand binding and activation of PPARγ by Firemaster® 550:Effects on adipogenesis and osteogenesis in vitro[J]. Environmental Health Perspectives, 2014, 122(11):1225-1232
    Tung E W Y, Peshdary V, Gagné R, et al. Adipogenic effects and gene expression profiling of firemaster® 550 components in human primary preadipocytes[J]. Environmental Health Perspectives, 2017, 125(9):097013
    Bleck B, Grunig G, Chiu A, et al. MicroRNA-375 regulation of thymic stromal lymphopoietin by diesel exhaust particles and ambient particulate matter in human bronchial epithelial cells[J]. Journal of Immunology, 2013, 190(7):3757-3763
    Fossati S, Baccarelli A, Zanobetti A, et al. Ambient particulate air pollution and microRNAs in elderly men[J]. Epidemiology, 2014, 25(1):68-78
    Stánitz E, Juhász K, Tóth C, et al. Evaluation of microRNA expression pattern of gastric adenocarcinoma associated with socioeconomic, environmental and lifestyle factors in northwestern Hungary[J]. Anticancer Research, 2013, 33(8):3195-3200
    Wang F, Liu W, Jin Y H, et al. Prenatal and neonatal exposure to perfluorooctane sulfonic acid results in aberrant changes in miRNA expression profile and levels in developing rat livers[J]. Environmental Toxicology, 2015, 30(6):712-723
    Singh N P, Singh U P, Guan H B, et al. Prenatal exposure to TCDD triggers significant modulation of microRNA expression profile in the thymus that affects consequent gene expression[J]. PLoS One, 2012, 7(9):e45054
    Vrijens K, Bollati V, Nawrot T S. MicroRNAs as potential signatures of environmental exposure or effect:A systematic review[J]. Environmental Health Perspectives, 2015, 123(5):399-411
    Su G Y, Crump D, Letcher R J, et al. Rapid in vitro metabolism of the flame retardant triphenyl phosphate and effects on cytotoxicity and mRNA expression in chicken embryonic hepatocytes[J]. Environmental Science & Technology, 2014, 48(22):13511-13519
    Betel D, Wilson M, Gabow A, et al. The microRNA.org resource:Targets and expression[J]. Nucleic Acids Research, 2008, 36(Database issue):D149-D153
    Agarwal V, Bell G W, Nam J W, et al. Predicting effective microRNA target sites in mammalian mRNAs[J]. eLIFE, 2015, 4:05005
    何春桃. 广东省典型住区室内灰尘常见有机阻燃剂污染特征及毒性[D]. 广州:中山大学, 2016:67-95 He C T. Contamination characteristics and toxicity of selected organic flame retardants in indoor dust of typical residential regions in Guangdong Province[D]. Guangzhou:Sun Yat-sen University, 2016:67

    -95(in Chinese)

    Belcher S M, Cookman C J, Patisaul H B, et al. In vitro assessment of human nuclear hormone receptor activity and cytotoxicity of the flame retardant mixture FM 550 and its triarylphosphate and brominated components[J]. Toxicology Letters, 2014, 228(2):93-102
    van den Eede N, Maho W, Erratico C, et al. First insights in the metabolism of phosphate flame retardants and plasticizers using human liver fractions[J]. Toxicology Letters, 2013, 223(1):9-15
    Du Z K, Zhang Y, Wang G W, et al. TPhP exposure disturbs carbohydrate metabolism, lipid metabolism, and the DNA damage repair system in zebrafish liver[J]. Scientific Reports, 2016, 6:21827
    Mitchell C A, Dasgupta S, Zhang S, et al. Disruption of nuclear receptor signaling alters triphenyl phosphate-induced cardiotoxicity in zebrafish embryos[J]. Toxicological Sciences, 2018, 163(1):307-318
    Norata G D, Sala F, Catapano A L, et al. MicroRNAs and lipoproteins:A connection beyond atherosclerosis?[J]. Atherosclerosis, 2013, 227(2):209-215
    Moore K J, Rayner K J, Suárez Y, et al. The role of microRNAs in cholesterol efflux and hepatic lipid metabolism[J]. Annual Review of Nutrition, 2011, 31:49-63
    Li Y, Li M C, Liu Y X, et al. A microarray for microRNA profiling in spermatozoa from adult men living in an environmentally polluted site[J]. Bulletin of Environmental Contamination and Toxicology, 2012, 89(6):1111-1114
    Lu Z X, Li Y, Takwi A, et al. miR-301a as an NF-κB activator in pancreatic cancer cells[J]. The EMBO Journal, 2011, 30(1):57-67
    Panguluri S K, Tur J, Chapalamadugu K C, et al. MicroRNA-301a mediated regulation of Kv4.2 in diabetes:Identification of key modulators[J]. PLoS One, 2013, 8(4):e60545
    Fang Y X, Xue J L, Shen Q, et al. MicroRNA-7 inhibits tumor growth and metastasis by targeting the phosphoinositide 3-kinase/Akt pathway in hepatocellular carcinoma[J]. Hepatology, 2012, 55(6):1852-1862
    Zhang K, Zhao S, Wang Q, et al. Identification of microRNAs in nipple discharge as potential diagnostic biomarkers for breast cancer[J]. Annals of Surgical Oncology, 2015, 22(Suppl3):S536-S544
    Byun J S, Hong S H, Choi J K, et al. Diagnostic profiling of salivary exosomal microRNAs in oral lichen planus patients[J]. Oral Diseases, 2015, 21(8):987-993
    Das K, Saikolappan S, Dhandayuthapani S. Differential expression of miRNAs by macrophages infected with virulent and avirulent Mycobacterium tuberculosis[J]. Tuberculosis, 2013, 93(Suppl):S47-S50
    Tsai W C, Hsu S D, Hsu C S, et al. MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis[J]. Journal of Clinical Investigation, 2012, 122(8):2884-2897
    Gerin I, Bommer G T, McCoin C S, et al. Roles for miRNA-378/378* in adipocyte gene expression and lipogenesis[J]. American Journal of Physiology-Endocrinology and Metabolism, 2010, 299(2):E198-E206
    Hong X S, Chen R, Yuan L L, et al. Global microRNA and isomiR expression associated with liver metabolism is induced by organophosphorus flame retardant exposure in male Chinese rare minnow (Gobiocypris rarus)[J]. Science of the Total Environment, 2019, 649:829-838
    Huang Y C, Dai Y, Zhang J, et al. Circulating miRNAs might be promising biomarkers to reflect the dynamic pathological changes in smoking-related interstitial fibrosis[J]. Toxicology and Industrial Health, 2014, 30(2):182-191
    Giray B G, Emekdas G, Tezcan S, et al. Profiles of serum microRNAs; miR-125b-5p and miR223-3p serve as novel biomarkers for HBV-positive hepatocellular carcinoma[J]. Molecular Biology Reports, 2014, 41(7):4513-4519
  • 加载中
计量
  • 文章访问数:  2450
  • HTML全文浏览数:  2450
  • PDF下载数:  80
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-03-06
何春桃, 严骁, 付惠玲, 庄僖, 郑晶, 麦碧娴, 杨中艺, 于云江. 磷酸三苯酯经miRNA介导的人肝细胞脂类代谢干扰作用[J]. 生态毒理学报, 2021, 16(2): 140-150. doi: 10.7524/AJE.1673-5897.20200306001
引用本文: 何春桃, 严骁, 付惠玲, 庄僖, 郑晶, 麦碧娴, 杨中艺, 于云江. 磷酸三苯酯经miRNA介导的人肝细胞脂类代谢干扰作用[J]. 生态毒理学报, 2021, 16(2): 140-150. doi: 10.7524/AJE.1673-5897.20200306001
He Chuntao, Yan Xiao, Fu Huiling, Zhuang Xi, Zheng Jing, Mai Bixian, Yang, Yu Yunjiang. TPhP Induced Lipid Metabolism Disruption Mediated by miRNA in Hepatocyte[J]. Asian journal of ecotoxicology, 2021, 16(2): 140-150. doi: 10.7524/AJE.1673-5897.20200306001
Citation: He Chuntao, Yan Xiao, Fu Huiling, Zhuang Xi, Zheng Jing, Mai Bixian, Yang, Yu Yunjiang. TPhP Induced Lipid Metabolism Disruption Mediated by miRNA in Hepatocyte[J]. Asian journal of ecotoxicology, 2021, 16(2): 140-150. doi: 10.7524/AJE.1673-5897.20200306001

磷酸三苯酯经miRNA介导的人肝细胞脂类代谢干扰作用

    通讯作者: 郑晶, E-mail: zhengjing@scies.org
    作者简介: 何春桃(1989-),女,副教授,研究方向为生态学,E-mail:hecht3@mail.sysu.edu.cn
  • 1. 中山大学农学院, 深圳 518107;
  • 2. 生态环境部华南环境科学研究所, 国家环境保护环境污染健康风险评价重点实验室, 广州 510530;
  • 3. 湖南工学院安全与环境工程学院, 衡阳 421002;
  • 4. 中国科学院广州地球化学研究所, 有机地球化学国家重点实验室, 广州 510640
基金项目:

国家自然科学基金青年基金资助项目(21707177);广州市科技计划项目(201804010074);国家自然科学基金重点项目(41931290)

摘要: 磷酸三苯酯(triphenyl phosphate,TPhP)是近年来广泛应用于电子产品的磷系阻燃剂,其脂类代谢干扰作用受到广泛关注,而microRNAs(miRNAs)在TPhP脂类代谢干扰过程中的调控作用仍鲜有报道。本研究通过探讨TPhP暴露条件下人肝细胞的细胞活性、TPhP清除速率与miRNAs表达调控特征,并与已获得转录组数据联合分析,明确TPhP经miRNA介导的脂类代谢干扰作用。在不同浓度TPhP暴露处理48 h后,人肝细胞的细胞活性随着暴露浓度呈先上升后下降的趋势,半数致死效应剂量为46.7 μmol·L-1。在5 μg·mL-1的TPhP暴露3 h和48 h后,TPhP的清除率分别为73.9%和85.1%。人肝细胞多个miRNAs表达差异显著,差异表达miRNAs所调控的靶基因主要参与代谢、脂肪酸合成、类固醇合成及癌症相关通路。通过转录组关联分析,差异表达miR-34c-5p、miR-301a-5p和miR-7等多个miRNAs对脂类代谢相关通路的关键基因具有调控作用,并构成miRNA-mRNA调控网络。综上所述,人肝细胞对TPhP具有较高的清除效率,TPhP暴露诱导miRNA差异表达所介导的脂类代谢干扰作用是TPhP对人肝细胞的主要毒性作用,miR-7和miR-4484等miRNAs能作为TPhP胁迫下脂类代谢干扰作用的潜在生物指示物。

English Abstract

参考文献 (35)

返回顶部

目录

/

返回文章
返回