纳米TiO2暴露对萼花臂尾轮虫种群动态的影响

李猛, 黄荣, 席贻龙, 项贤领. 纳米TiO2暴露对萼花臂尾轮虫种群动态的影响[J]. 生态毒理学报, 2020, 15(6): 234-242. doi: 10.7524/AJE.1673-5897.20200103002
引用本文: 李猛, 黄荣, 席贻龙, 项贤领. 纳米TiO2暴露对萼花臂尾轮虫种群动态的影响[J]. 生态毒理学报, 2020, 15(6): 234-242. doi: 10.7524/AJE.1673-5897.20200103002
Li Meng, Huang Rong, Xi Yilong, Xiang Xianling. Effects of nano-TiO2 Exposure on Population Dynamics of Brachionus calyciflorus[J]. Asian journal of ecotoxicology, 2020, 15(6): 234-242. doi: 10.7524/AJE.1673-5897.20200103002
Citation: Li Meng, Huang Rong, Xi Yilong, Xiang Xianling. Effects of nano-TiO2 Exposure on Population Dynamics of Brachionus calyciflorus[J]. Asian journal of ecotoxicology, 2020, 15(6): 234-242. doi: 10.7524/AJE.1673-5897.20200103002

纳米TiO2暴露对萼花臂尾轮虫种群动态的影响

    作者简介: 李猛(1995-),男,硕士,研究方向为纳米材料的生态毒理效应,E-mail:1259305578@qq.com
    通讯作者: 项贤领, E-mail: xiangxianling@163.com
  • 基金项目:

    国家自然科学基金资助项目(31872208);生物环境与生态安全安徽省高校省级重点实验室专项

  • 中图分类号: X171.5

Effects of nano-TiO2 Exposure on Population Dynamics of Brachionus calyciflorus

    Corresponding author: Xiang Xianling, xiangxianling@163.com
  • Fund Project:
  • 摘要: 因具有特殊的结构和性能,纳米材料的环境生物安全和潜在风险已引起人们的广泛关注,而由纳米TiO2所引起的轮虫种群动态变化尚鲜有报道。以萼花臂尾轮虫(Brachionus calyciflorus)为受试生物,通过急性和慢性毒性实验,探究纳米TiO2暴露对萼花臂尾轮虫种群动态的影响。结果表明,萼花臂尾轮虫48 h半致死浓度(48 h-LC50)值为30.20 mg·L-1;当纳米TiO2浓度≥1 mg·L-1时,萼花臂尾轮虫的最大种群密度、平均种群密度、平均种群增长率、平均非混交卵数量以及总雌体生产量受到显著抑制,且轮虫达到最大种群密度的时间更短,说明纳米TiO2的介入降低了环境容纳量,抑制了萼花臂尾轮虫种群繁殖力。此外,在2.0 mg·L-1和2.5 mg·L-1纳米TiO2处理组中休眠卵产量较对照组显著提高,当浓度≥1.5 mg·L-1时,种群平均混交率也显著提高,说明纳米TiO2暴露对萼花臂尾轮虫的有性生殖具有显著影响,这可归结于纳米TiO2显著提高了单位体积内产休眠卵的混交雌体生产量。
  • 加载中
  • Ge Y, Schimel J P, Holden P A. Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities[J]. Environmental Science & Technology, 2011, 45(4):1659-1664
    Shi H B, Magaye R, Castranova V, et al. Titanium dioxide nanoparticles:A review of current toxicological data[J]. Particle and Fibre Toxicology, 2013, 10:15
    Teske S S, Detweiler C S. The biomechanisms of metal and metal-oxide nanoparticles' interactions with cells[J]. International Journal of Environmental Research and Public Health, 2015, 12(2):1112-1134
    Roy B, Chandrasekaran H, Palamadai Krishnan S, et al. UVA pre-irradiation to P25 titanium dioxide nanoparticles enhanced its toxicity towards freshwater algae Scenedesmus obliquus[J]. Environmental Science and Pollution Research International, 2018, 25(17):16729-16742
    Naha P C, Mukherjee S P, Byrne H J. Toxicology of engineered nanoparticles:Focus on poly(amidoamine) dendrimers[J]. International Journal of Environmental Research and Public Health, 2018, 15(2):E338
    Goswami L, Kim K H, Deep A, et al. Engineered nano particles:Nature, behavior, and effect on the environment[J]. Journal of Environmental Management, 2017, 196:297-315
    Sadrieh N, Wokovich A M, Gopee N V, et al. Lack of significant dermal penetration of titanium dioxide from sunscreen formulations containing nano- and submicron-size TiO2 particles[J]. Toxicological Sciences, 2010, 115(1):156-166
    Zhao Y X, Lin K F, Zhang W. Nano-titanium dioxide (TiO2)-induced changes affecting Cu2+-mediated alterations in bacterium Bacillus subtilis and α-amylase[J]. Toxicological & Environmental Chemistry, 2010, 92(10):1851-1856
    Weir A, Westerhoff P, Fabricius L, et al. Titanium dioxide nanoparticles in food and personal care products[J]. Environmental Science & Technology, 2012, 46(4):2242-2250
    Foster H A, Ditta I B, Varghese S, et al. Photocatalytic disinfection using titanium dioxide:Spectrum and mechanism of antimicrobial activity[J]. Applied Microbiology and Biotechnology, 2011, 90(6):1847-1868
    Hazani A, Ibrahim M, Shehata A, et al. Ecotoxicity of Ag-nanoparticles on two microalgae, Chlorella vulgaris and Dunaliella tertiolecta[J]. Archives of Biological Sciences, 2013, 65(4):1447-1457
    Tyner K M, Wokovich A M, Godar D E, et al. The state of nano-sized titanium dioxide (TiO2) may affect sunscreen performance[J]. International Journal of Cosmetic Science, 2011, 33(3):234-244
    Tang X H, Wu C Z, Li B Z, et al. New applications of nano titanium dioxide[J]. Meteorological and Environmental Research, 2012, 3(Z1):55-57
    Li Q L, Mahendra S, Lyon D Y, et al. Antimicrobial nanomaterials for water disinfection and microbial control:Potential applications and implications[J]. Water Research, 2008, 42(18):4591-4602
    Dréno B, Alexis A, Chuberre B, et al. Safety of titanium dioxide nanoparticles in cosmetics[J]. Journal of the European Academy of Dermatology and Venereology, 2019, 33(Suppl 7):34-46
    Gupta V K, Jain R, Mittal A, et al. Photochemical degradation of the hazardous dye Safranin-T using TiO2 catalyst[J]. Journal of Colloid and Interface Science, 2007, 309(2):464-469
    Cardinale B J, Bier R, Kwan C. Effects of TiO2 nanoparticles on the growth and metabolism of three species of freshwater algae[J]. Journal of Nanoparticle Research, 2012, 14(8):1-8
    Binh C T, Peterson C G, Tong T Z, et al. Comparing acute effects of a nano-TiO2 pigment on cosmopolitan freshwater phototrophic microbes using high-throughput screening[J]. PLoS One, 2015, 10(4):e0125613
    Xiong D W, Fang T, Yu L P, et al. Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish:Acute toxicity, oxidative stress and oxidative damage[J]. The Science of the Total Environment, 2011, 409(8):1444-1452
    Fekete-Kertész I, Maros G, Molnár M, et al. The effect of TiO2 nanoparticles on the aquatic ecosystem:A comparative ecotoxicity study with test organisms of different trophic levels[J]. Periodica Polytechnica Chemical Engineering, 2016, 60(4):231-243
    Zhu X S, Chang Y, Chen Y S. Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna[J]. Chemosphere, 2010, 78(3):209-215
    Farner J M, Cheong R S, Mahé E, et al. Comparing TiO2 nanoparticle formulations:Stability and photoreactivity are key factors in acute toxicity to Daphnia magna[J]. Environmental Science:Nano, 2019, 6(8):2532-2543
    Nogueira V, Lopes I, Rocha-Santos T A, et al. Assessing the ecotoxicity of metal nano-oxides with potential for wastewater treatment[J]. Environmental Science and Pollution Research International, 2015, 22(17):13212-13224
    Clément L, Hurel C, Marmier N. Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants-Effects of size and crystalline structure[J]. Chemosphere, 2013, 90(3):1083-1090
    Gottschalk F, Sonderer T, Scholz R W, et al. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions[J]. Environmental Science & Technology, 2009, 43(24):9216-9222
    Jing Q F, Yi Z L, Lin D H, et al. Enhanced sorption of naphthalene and p-nitrophenol by nano-SiO2 modified with a cationic surfactant[J]. Water Research, 2013, 47(12):4006-4012
    Peltier W H, Weber C I. Methods for measuring the acute toxicity of effluents to freshwater and marine organisms[R]. Cincinnati, Ohio:United States Environmental Protection Agency, 1985:31-36
    Organization for Economic Co-operation and Development (OECD). OECD Guidelines for the Testing of Chemicals, Section 2, Test No. 201:Freshwater Alga and Cyanobacteria, Growth Inhibition Test[S]. Paris:OECD, 2011
    Lee W M, An Y J. Effects of zinc oxide and titanium dioxide nanoparticles on green algae under visible, UVA, and UVB irradiations:No evidence of enhanced algal toxicity under UV pre-irradiation[J]. Chemosphere, 2013, 91(4):536-544
    Liu Y H, Wang S, Wang Z, et al. TiO2, SiO2 and ZrO2 nanoparticles synergistically provoke cellular oxidative damage in freshwater microalgae[J]. Nanomaterials, 2018, 8(2):95
    Metzler D M, Erdem A, Huang C P. Influence of algae age and population on the response to TiO2 nanoparticles[J]. International Journal of Environmental Research and Public Health, 2018, 15(4):E585
    Chen J Y, Li H R, Han X Q, et al. Transmission and accumulation of nano-TiO2 in a 2-step food chain (Scenedesmus obliquus to Daphnia magna)[J]. Bulletin of Environmental Contamination and Toxicology, 2015, 95(2):145-149
    Dumont H J, Sarma S S S. Demography and population growth of Asplanchna girodi (Rotifera) as a function of prey (Anuraeopsis fissa) density[J]. Hydrobiologia, 1995, 306(2):97-107
    Krebs C J. Ecology:The Experimental Analysis of Distribution and Abundance[M]. Benjamin Cummings, 1985:133-148
    Snell T W, Hoff F H. The effect of environmental factors on resting egg production in the rotifer Brachionus plicatilis[J]. Journal of the World Mariculture Society, 2009, 16(1-4):484-497
    Klaine S J, Alvarez P J, Batley G E, et al. Nanomaterials in the environment:Behavior, fate, bioavailability, and effects[J]. Environmental Toxicology and Chemistry, 2008, 27(9):1825-1851
    Tsiridis V, Petala M, Koukiotis C, et al. Implications of handling practices on the ecotoxic profile of alumina nanoparticles towards the bacteria Vibrio fischeri[J]. Journal of Environmental Science and Health Part A, Toxic/Hazardous Substances & Environmental Engineering, 2017, 52(1):15-22
    Seitz F, Rosenfeldt R R, Müller M, et al. Quantity and quality of natural organic matter influence the ecotoxicity of titanium dioxide nanoparticles[J]. Nanotoxicology, 2016, 10(10):1415-1421
    Horst A M, Neal A C, Mielke R E, et al. Dispersion of TiO2 nanoparticle agglomerates by Pseudomonas aeruginosa[J]. Applied and Environmental Microbiology, 2010, 76(21):7292-7298
    Ottofuelling S, von der Kammer F, Hofmann T. Commercial titanium dioxide nanoparticles in both natural and synthetic water:Comprehensive multidimensional testing and prediction of aggregation behavior[J]. Environmental Science & Technology, 2011, 45(23):10045-10052
    Segers H. Global diversity of rotifers (Rotifera) in freshwater[J]. Hydrobiologia, 2008, 595(1):49-59
    Verma V, Rico-Martinez R, Kotra N, et al. Estimating the toxicity of ambient fine aerosols using freshwater rotifer Brachionus calyciflorus (Rotifera:Monogononta)[J]. Environmental Pollution, 2013, 182:379-384
    Kaneko G, Yoshinaga T, Yanagawa Y, et al. Molecular characterization of Mn-superoxide dismutase and gene expression studies in dietary restricted Brachionus plicatilis rotifers[J]. Hydrobiologia, 2005, 546(1):117-123
    Halbach U, Siebert M, Westermayer M, et al. Population ecology of rotifers as a bioassay tool for ecotoxicological tests in aquatic environments[J]. Ecotoxicology and Environmental Safety, 1983, 7(5):484-513
    Rico-Martínez R, Pérez-Legaspi I A, Arias-Almeida J C, et al. Rotifers in Ecotoxicology[M]//Encyclopedia of Aquatic Ecotoxicology. Dordrecht:Springer Netherlands, 2013:973-996
    Rotini A, Gallo A, Parlapiano I, et al. Insights into the CuO nanoparticle ecotoxicity with suitable marine model species[J]. Ecotoxicology and Environmental Safety, 2018, 147:852-860
    Khoshnood R, Jaafarzadeh N, Jamili S, et al. Nanoparticles ecotoxicity on Daphnia magna[J]. Transylvanian Review of Systematical and Ecological Research, 2016, 18(2):29-38
    Zhu X S, Zhu L, Chen Y S, et al. Acute toxicities of six manufactured nanomaterial suspensions to Daphnia magna[J]. Journal of Nanoparticle Research, 2009, 11(1):67-75
    Adam N, Vakurov A, Knapen D, et al. The chronic toxicity of CuO nanoparticles and copper salt to Daphnia magna[J]. Journal of Hazardous Materials, 2015, 283:416-422
    Gökçe D, Köytepe S, Özcan I·. Effects of nanoparticles on Daphnia magna population dynamics[J]. Chemistry and Ecology, 2018, 34(4):301-323
    Noss C, Dabrunz A, Rosenfeldt R R, et al. Three-dimensional analysis of the swimming behavior of Daphnia magna exposed to nanosized titanium dioxide[J]. PLoS One, 2013, 8(11):e80960
    Mackevica A, Skjolding L M, Gergs A, et al. Chronic toxicity of silver nanoparticles to Daphnia magna under different feeding conditions[J]. Aquatic Toxicology, 2015, 161:10-16
    Zhao C M, Wang W X. Comparison of acute and chronic toxicity of silver nanoparticles and silver nitrate to Daphnia magna[J]. Environmental Toxicology and Chemistry, 2011, 30(4):885-892
    Wang H H, Fan W H, Xue F, et al. Chronic effects of six micro/nano-Cu2O crystals with different structures and shapes on Daphnia magna[J]. Environmental Pollution, 2015, 203:60-68
    Pourriot R, Snell T W. Resting eggs in rotifers[J]. Hydrobiologia, 1983, 104(1):213-224
  • 加载中
计量
  • 文章访问数:  1636
  • HTML全文浏览数:  1636
  • PDF下载数:  63
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-01-03
李猛, 黄荣, 席贻龙, 项贤领. 纳米TiO2暴露对萼花臂尾轮虫种群动态的影响[J]. 生态毒理学报, 2020, 15(6): 234-242. doi: 10.7524/AJE.1673-5897.20200103002
引用本文: 李猛, 黄荣, 席贻龙, 项贤领. 纳米TiO2暴露对萼花臂尾轮虫种群动态的影响[J]. 生态毒理学报, 2020, 15(6): 234-242. doi: 10.7524/AJE.1673-5897.20200103002
Li Meng, Huang Rong, Xi Yilong, Xiang Xianling. Effects of nano-TiO2 Exposure on Population Dynamics of Brachionus calyciflorus[J]. Asian journal of ecotoxicology, 2020, 15(6): 234-242. doi: 10.7524/AJE.1673-5897.20200103002
Citation: Li Meng, Huang Rong, Xi Yilong, Xiang Xianling. Effects of nano-TiO2 Exposure on Population Dynamics of Brachionus calyciflorus[J]. Asian journal of ecotoxicology, 2020, 15(6): 234-242. doi: 10.7524/AJE.1673-5897.20200103002

纳米TiO2暴露对萼花臂尾轮虫种群动态的影响

    通讯作者: 项贤领, E-mail: xiangxianling@163.com
    作者简介: 李猛(1995-),男,硕士,研究方向为纳米材料的生态毒理效应,E-mail:1259305578@qq.com
  • 1. 安徽师范大学生态与环境学院, 芜湖 241000;
  • 2. 皖江流域退化生态系统的恢复与重建省部共建协同创新中心, 芜湖 241000
基金项目:

国家自然科学基金资助项目(31872208);生物环境与生态安全安徽省高校省级重点实验室专项

摘要: 因具有特殊的结构和性能,纳米材料的环境生物安全和潜在风险已引起人们的广泛关注,而由纳米TiO2所引起的轮虫种群动态变化尚鲜有报道。以萼花臂尾轮虫(Brachionus calyciflorus)为受试生物,通过急性和慢性毒性实验,探究纳米TiO2暴露对萼花臂尾轮虫种群动态的影响。结果表明,萼花臂尾轮虫48 h半致死浓度(48 h-LC50)值为30.20 mg·L-1;当纳米TiO2浓度≥1 mg·L-1时,萼花臂尾轮虫的最大种群密度、平均种群密度、平均种群增长率、平均非混交卵数量以及总雌体生产量受到显著抑制,且轮虫达到最大种群密度的时间更短,说明纳米TiO2的介入降低了环境容纳量,抑制了萼花臂尾轮虫种群繁殖力。此外,在2.0 mg·L-1和2.5 mg·L-1纳米TiO2处理组中休眠卵产量较对照组显著提高,当浓度≥1.5 mg·L-1时,种群平均混交率也显著提高,说明纳米TiO2暴露对萼花臂尾轮虫的有性生殖具有显著影响,这可归结于纳米TiO2显著提高了单位体积内产休眠卵的混交雌体生产量。

English Abstract

参考文献 (55)

返回顶部

目录

/

返回文章
返回