锑的淡水沉积物质量基准初探

许志楠, 杨再福, 耿丽莎, 王亚楠, 张琪悦. 锑的淡水沉积物质量基准初探[J]. 生态毒理学报, 2020, 15(4): 280-287. doi: 10.7524/AJE.1673-5897.20190725002
引用本文: 许志楠, 杨再福, 耿丽莎, 王亚楠, 张琪悦. 锑的淡水沉积物质量基准初探[J]. 生态毒理学报, 2020, 15(4): 280-287. doi: 10.7524/AJE.1673-5897.20190725002
Xu Zhinan, Yang Zaifu, Geng Lisha, Wang Yanan, Zhang Qiyue. Preliminary Study of Antimony Freshwater Sediment Quality Criteria[J]. Asian journal of ecotoxicology, 2020, 15(4): 280-287. doi: 10.7524/AJE.1673-5897.20190725002
Citation: Xu Zhinan, Yang Zaifu, Geng Lisha, Wang Yanan, Zhang Qiyue. Preliminary Study of Antimony Freshwater Sediment Quality Criteria[J]. Asian journal of ecotoxicology, 2020, 15(4): 280-287. doi: 10.7524/AJE.1673-5897.20190725002

锑的淡水沉积物质量基准初探

    作者简介: 许志楠(1996-),男,硕士研究生,研究方向为环境生态与污染场地修复,E-mail:xznjustdoit@163.com
    通讯作者: 杨再福, E-mail: zzfyang@dhu.edu.cn
  • 基金项目:

    上海市科技攻关项目(033919457)

  • 中图分类号: X171.5

Preliminary Study of Antimony Freshwater Sediment Quality Criteria

    Corresponding author: Yang Zaifu, zzfyang@dhu.edu.cn
  • Fund Project:
  • 摘要: 我国未建立锑(Sb)的淡水沉积物质量基准(freshwater sediment quality criteria,SQCfw)。锑的沉积物毒理学数据有限,本文通过分配实验获得宏观分配系数Km=165.22ρw-0.319,将锑在水中的浓度转化为锑在沉积物中的含量。在20个毒理学数据的基础上,采用物种敏感性分布法(species sensitivity distributions,SSD)并选取Logistic模型将其拟合,得到锑的SQCfw为37.80 mg·kg-1。本文同时为SQC的建立提供了基于生物毒性的方案。
  • 加载中
  • Krenev V A, Dergacheva N P, Fomichev S V. Antimony:Resources, application fields, and world market[J]. Theoretical Foundations of Chemical Engineering, 2015, 49(5):769-772
    Li J, Zheng B, He Y, et al. Antimony contamination, consequences and removal techniques:A review[J]. Ecotoxicology and Environmental Safety, 2018, 156:125-134
    Herath I, Vithanage M, Bundschuh J. Antimony as a global dilemma:Geochemistry, mobility, fate and transport[J]. Environmental Pollution, 2017, 223:545-559
    向猛, 黄益宗, 蔡立群, 等. 外源钙对两种价态锑胁迫下水稻幼苗吸收积累锑和钙的影响[J]. 生态毒理学报, 2015, 10(3):153-160

    Xiang M, Huang Y Z, Cai L Q, et al. Effect of calcium on uptake and acumulation of antimony and calcium by rice seedling in solution culture[J]. Asian Journal of Ecotoxicology, 2015, 10(3):153-160(in Chinese)

    He M, Wang X, Wu F, et al. Antimony pollution in China[J]. Science of the Total Environment, 2012, 421-422(3):41-50
    王漫漫, 陆昊, 李慧明, 等. 太湖流域典型河流重金属污染和生态风险评估[J]. 环境化学, 2016, 35(10):2025-2035

    Wang M M, Lu H, Li H M, et al. Pollution level and ecological risk assessment of heavy metals in typical rivers of Taihu basin[J]Environmental Chemistry, 2016, 35(10):2025-2035(in Chinese)

    Li X, Yang H, Zhang C, et al. Spatial distribution and transport characteristics of heavy metals around an antimony mine area in central China[J]. Chemosphere, 2017, 170:17-24
    宁增平, 肖青相, 蓝小龙, 等. 都柳江水系沉积物锑等重金属空间分布特征及生态风险[J]. 环境科学, 2017, 38(7):2784-2792

    Ning Z P, Xiao Q X, Lan X L, et al. Spatial distribution characteristics and potential ecological risk of antimony and selected heavy metals in sediments of Duliujiang River[J]. Environmental Science, 2017, 38(7):2784-2792(in Chinese)

    Wang X, He M, Xi J, et al. Antimony distribution and mobility in rivers around the world's largest antimony mine of Xikuangshan, Hunan Province, China[J]. Microchemical Journal, 2011, 97(1):4-11
    Mandal S K, Majumder N, Chowdhury C, et al. Effect of pH and salinity on sorption of antimony (Ⅲ and Ⅴ) on mangrove sediment, Sundarban, India[J]. Soil & Sediment Contamination, 2017, 26(4):1-12
    Yang H, He M. Distribution and speciation of selenium, antimony, and arsenic in soils and sediments around the area of Xikuangshan (China)[J]. CLEAN-Soil, Air, Water, 2016, 44(11):1538-1546
    田大勇, 常琛朝, 王成志, 等. 环境中重金属和有机污染物的物种敏感性分布研究进展[J]. 生态毒理学报, 2015, 10(3):38-49

    Tian D Y, Chang C C, Wang C Z, et al. Review of species sensitivity distributions for heavy metals and organic contaminants[J]. Asian Journal of Ecotoxicology, 2015, 10(3):38-49(in Chinese)

    Posthuma L, Zwart D D. Species Sensitivity Distributions[M]//Encyclopedia of Toxicology. Amsterdam:Elsevier, 2014:363-368
    Leung K M Y, Anders B R, Gray J S, et al. Deriving sediment quality guidelines from field-based species sensitivity distributions[J]. Environmental Science & Technology, 2005, 39(14):5148-5156
    Gao P, Li Z, Gibson M, et al. Ecological risk assessment of nonylphenol in coastal waters of China based on species sensitivity distribution model[J]. Chemosphere, 2014, 104(3):113-119
    刘亚莉, 谢玉为, 张效伟, 等. 应用物种敏感性分布评价敌敌畏对淡水生物的生态风险[J]. 生态毒理学报, 2016, 11(2):531-538

    Liu Y L, Xie Y W, Zhang X W, et al. Assessing ecological risks of dichlorvos to freshwater organisms by species sensitivity distribution[J]. Asian Journal of Ecotoxicology, 2016, 11(2):531-538(in Chinese)

    孙在金, 赵淑婷, 林祥龙, 等. 基于物种敏感度分布法建立中国土壤中锑的环境基准[J]. 环境科学研究, 2018, 31(4):774-781

    Sun Z J, Zhao S T, Lin X L, et al. Deriving soils environmental criteria of antimony in China by species sensitivity distributions[J]. Research of Environmental Sciences, 2018, 31(4):774-781(in Chinese)

    钟文珏, 曾毅, 祝凌燕. 水体沉积物质量基准研究现状[J]. 生态毒理学报, 2013, 8(3):285-294

    Zhong W J, Zeng Y, Zhu L Y. Current research status of sediment quality criteria[J]. Asian Journal of Ecotoxicology, 2013, 8(3):285-294(in Chinese)

    陈心悦, 张彦峰, 沈兆爽, 等. 中国七大水系淡水沉积物中林丹(γ-HCH)的生态风险评估[J]. 生态毒理学报, 2018, 13(3):103-111

    Chen X Y, Zhang Y F, Shen Z S, et al. Ecological risk assessment of γ-HCH for freshwater sediment of seven major river systems in China[J]. Asian Journal of Ecotoxicology, 2018, 13(3):103-111(in Chinese)

    Long E R, Morgan L G. Potential for biological effects of sediment-sorbed contaminants tested in the National Status and Trends program. Technical memo[R]. Rockville:National Oceanic & Atmospheric Admininistration, 1990
    McCready S, Birch G F, Long E R, et al. An evaluation of Australian sediment quality guidelines[J]. Archives of Environmental Contamination & Toxicology, 2006, 50(3):306-315
    金相灿. 沉积物污染化学[M]. 北京:中国环境科学出版社, 1992:135 Jin X C. Sediment Contamination Chemistry[M]. Beijing:China Environmental Science Press, 1992:135(in Chinese)
    Obiakor M O, Tighe M, Wang Z, et al. The relative sensitivity of freshwater species to antimony(Ⅲ):Implications for water quality guidelines and ecological risk assessments[J]. Environmental Science & Pollution Research International, 2017, 24(32):25276-25290
    Wheeler J R, Grist E P M, Leung K M Y, et al. Species sensitivity distributions:Data and model choice[J]. Marine Pollution Bulletin, 2002, 45(1):192-202
    王小庆, 韦东普, 黄占斌. 物种敏感性分布法在土壤中铜生态阈值建立中的应用研究[J]. 环境科学学报, 2013, 33(6):1787-1794

    Wang X Q, Wei D P, Huang Z B, et al. Application of species sensitivity distribution in deriving of ecological thresholds for copper in soils[J]. Acta Scientiae Circumstantiae, 2013, 33(6):1787-1794(in Chinese)

    Keating K A, Cherry S. Use and interpretation of Logistic regression in habitat-selection studies[J]. Journal of Wildlife Management, 2011, 68(4):774-789
    Silva P V, Silva A R R, Mendo S, et al. Toxicity of tributyltin (TBT) to terrestrial organisms and its species sensitivity distribution[J]. Science of the Total Environment, 2014, 466-467(1):1037-1046
    李雪华, 徐鹏, 李俊青. 污染河流沉积物锑释放规律的研究[J]. 北京工业大学学报, 2013(5):785-791 Li X H, Xu P, Li J Q. Antimony release from the sediments of the antimony-polluted river[J]. Journal of Beijing University of Technology, 2013

    (5):785-791(in Chinese)

    Borgmann U, Couillard Y, Doyle P, et al. Toxicity of sixty-three metals and metalloids to Hyalella azteca at two levels of water hardness[J]. Environmental Toxicology & Chemistry, 2010, 24(3):641-652
    Nan S H, Yang C Y, An Y J. Effects of antimony on aquatic organisms (larva and embryo of Oryzias latipes, Moina macrocopa, Simocephalus mixtus, and Pseudokirchneriella subcapitata)[J]. Chemosphere, 2009, 75(7):889-893
    Díaz S, Villares R, Vázquez M D, et al. Physiological effects of exposure to arsenic, mercury, antimony and selenium in the aquatic moss Fontinalis antipyretica Hedw.[J]. Water Air & Soil Pollution, 2013, 224(8):1659
    Yang J L. Comparative acute toxicity of gallium(Ⅲ), antimony(Ⅲ), indium(Ⅲ), cadmium(Ⅱ), and copper(Ⅱ) on freshwater swamp shrimp (Macrobrachium nipponense)[J]. Biological Research, 2014, 47(1):1-4
    Yang J L, Chen L H. Toxicity of antimony, gallium, and indium toward a teleost model and a native fish species of semiconductor manufacturing districts of Taiwan[J]. Journal of Elementology, 2018, 23(1):191-199
    Yang J L, Chen L H, Chen H C. Effects of SbCl3 on aquatic organism:Acute test, serum metabolic enzyme activities, and blood cell deformation[J]. Environmental Science:An Indian Journal, 2007, 2(1):53-58
    Heitmuller P T, Hollister T A, Parrish P R. Acute toxicity of 54 industrial chemicals to sheepshead minnows (Cyprinodon variegatus)[J]. Bulletin of Environmental Contamination & Toxicology, 1981, 27(5):596-604
    Ohio Environmental Protection Agency (Ohio EPA). Surface Water Quality Criterion Fast Sheet[R]. Columbus, Ohio:Ohio EPA, 2006
    Williams P L, Dusenbery D B. Aquatic toxicity testing using the nematode, Caenorhabditis elegans[J]. Environmental Toxicology & Chemistry, 2010, 9(10):1285-1290
    Lin H C, Hwang P P. Acute and chronic effects of antimony chloride (SbCl3) on tilapia (Oreochromis mossambicus) larvae[J]. Bulletin of Environmental Contamination & Toxicology, 1998, 61(1):129-134
    Kitamura H. Relation between the toxicity of some toxicants to the aquatic animals (Tanichthys albonubes and Neocaridina denticulata) and the hardness of the test solution[J]. Bulletin of the Faculty of Fisheries Nagasaki University, 1990, 67:13-19
    熊旭, 刘燕群, 叶超, 等. 三氯化锑对泥鳅的毒性效应[J]. 环境与健康杂志, 2014, 31(6):534-535

    Xiong X, Liu Y Q, Ye C, et al. Toxic effects of antimony trichloride on loach[J]. Journal of Environment and Health, 2014, 31(6):534-535(in Chinese)

    Xu F L, Li Y L, Wang Y, et al. Key issues for the development and application of the species sensitivity distribution (SSD) model for ecological risk assessment[J]. Ecological Indicators, 2015, 54(3):227-237
    赵佳懿, 杜建国, 陈彬, 等. 应用物种敏感性分布评估九龙江口水体重金属生态风险[J]. 生态学杂志, 2014, 33(2):400-407

    Zhao J Y, Du J G, Chen B, et al. Assessing ecological risks of heavy metals to marine organisms in the Jiulongjiang Estuary by species sensitivity distribution[J]. Chinese Journal of Ecology, 2014, 33(2):400-407(in Chinese)

    Xu L, Wu F, Jian Z, et al. Sediment records of Sb and Pb stable isotopic ratios in Lake Qinghai[J]. Microchemical Journal, 2011, 97(1):25-29
    卢莎莎, 顾尚义, 韩露, 等. 都柳江水体-沉积物间锑的迁移转化规律[J]. 贵州大学学报:自然版, 2013, 30(3):131-136

    Lu S S, Gu S Y, Han L, et al. Migration and transformation of antimony between water and sediment in Duliujiang River[J]. Journal of Guizhou University:Natural Sciences, 2013, 30(3):131-136(in Chinese)

    王茜, 刘永侠, 庄文, 等. 南四湖表层沉积物中铍、锑、铊的地球化学特征与环境风险[J]. 环境科学学报, 2018, 38(5):1968-1982

    Wang Q, Liu Y X, Zhuang W, et al. Research on geochemical characteristics and environmental risk of Be, Sb and Ti in surface sediments of the Nansihu[J]. Acta Scientiae Circumstantiae, 2018, 38(5):1968-1982(in Chinese)

    高阳俊, 耿春女, 曹勇. 基于三种污染危害评价方法的上海市郊区河网底泥重金属评价[J]. 环境工程, 2015, 33(10):121-125

    Gao Y J, Gen C N, Cao Y. Three assessment methods on heavy metals contamination in river sediments of Shanghai suburban area[J]. Environmental Engineering, 2015, 33(10):121-125(in Chinese)

  • 加载中
计量
  • 文章访问数:  2162
  • HTML全文浏览数:  2162
  • PDF下载数:  38
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-07-25
许志楠, 杨再福, 耿丽莎, 王亚楠, 张琪悦. 锑的淡水沉积物质量基准初探[J]. 生态毒理学报, 2020, 15(4): 280-287. doi: 10.7524/AJE.1673-5897.20190725002
引用本文: 许志楠, 杨再福, 耿丽莎, 王亚楠, 张琪悦. 锑的淡水沉积物质量基准初探[J]. 生态毒理学报, 2020, 15(4): 280-287. doi: 10.7524/AJE.1673-5897.20190725002
Xu Zhinan, Yang Zaifu, Geng Lisha, Wang Yanan, Zhang Qiyue. Preliminary Study of Antimony Freshwater Sediment Quality Criteria[J]. Asian journal of ecotoxicology, 2020, 15(4): 280-287. doi: 10.7524/AJE.1673-5897.20190725002
Citation: Xu Zhinan, Yang Zaifu, Geng Lisha, Wang Yanan, Zhang Qiyue. Preliminary Study of Antimony Freshwater Sediment Quality Criteria[J]. Asian journal of ecotoxicology, 2020, 15(4): 280-287. doi: 10.7524/AJE.1673-5897.20190725002

锑的淡水沉积物质量基准初探

    通讯作者: 杨再福, E-mail: zzfyang@dhu.edu.cn
    作者简介: 许志楠(1996-),男,硕士研究生,研究方向为环境生态与污染场地修复,E-mail:xznjustdoit@163.com
  • 东华大学环境科学与工程学院, 上海 201600
基金项目:

上海市科技攻关项目(033919457)

摘要: 我国未建立锑(Sb)的淡水沉积物质量基准(freshwater sediment quality criteria,SQCfw)。锑的沉积物毒理学数据有限,本文通过分配实验获得宏观分配系数Km=165.22ρw-0.319,将锑在水中的浓度转化为锑在沉积物中的含量。在20个毒理学数据的基础上,采用物种敏感性分布法(species sensitivity distributions,SSD)并选取Logistic模型将其拟合,得到锑的SQCfw为37.80 mg·kg-1。本文同时为SQC的建立提供了基于生物毒性的方案。

English Abstract

参考文献 (46)

返回顶部

目录

/

返回文章
返回