羧基化多壁碳纳米管与镉复合干扰蚕豆幼苗生理特性的研究

刘玲, 许婷婷, 赵薪程, 刘海燕, 戴慧芳, 杨俊文, 汪承润. 羧基化多壁碳纳米管与镉复合干扰蚕豆幼苗生理特性的研究[J]. 生态毒理学报, 2020, 15(6): 252-261. doi: 10.7524/AJE.1673-5897.20190601002
引用本文: 刘玲, 许婷婷, 赵薪程, 刘海燕, 戴慧芳, 杨俊文, 汪承润. 羧基化多壁碳纳米管与镉复合干扰蚕豆幼苗生理特性的研究[J]. 生态毒理学报, 2020, 15(6): 252-261. doi: 10.7524/AJE.1673-5897.20190601002
Liu Ling, Xu Tingting, Zhao Xincheng, Liu Haiyan, Dai Huifang, Yang Junwen, Wang Chengrun. Study on the Disturbation of Physiological Characteristics in Vicia faba L. Seedlings Exposed to Combination of Carboxylated Multi-Walled Carbon Nanotubes and Cadmium[J]. Asian journal of ecotoxicology, 2020, 15(6): 252-261. doi: 10.7524/AJE.1673-5897.20190601002
Citation: Liu Ling, Xu Tingting, Zhao Xincheng, Liu Haiyan, Dai Huifang, Yang Junwen, Wang Chengrun. Study on the Disturbation of Physiological Characteristics in Vicia faba L. Seedlings Exposed to Combination of Carboxylated Multi-Walled Carbon Nanotubes and Cadmium[J]. Asian journal of ecotoxicology, 2020, 15(6): 252-261. doi: 10.7524/AJE.1673-5897.20190601002

羧基化多壁碳纳米管与镉复合干扰蚕豆幼苗生理特性的研究

    作者简介: 刘玲(1967-),女,博士,副教授,研究方向为植物生态学及逆境生理学,E-mail:lliiuu494@sina.com
    通讯作者: 汪承润, E-mail: chengrunwang@163.com
  • 基金项目:

    安徽省教育厅重点项目(KJ2018A0472);安徽省重大专项项目(18030701189);安徽省自然科学基金资助项目(1608085QC50)

  • 中图分类号: X171.5

Study on the Disturbation of Physiological Characteristics in Vicia faba L. Seedlings Exposed to Combination of Carboxylated Multi-Walled Carbon Nanotubes and Cadmium

    Corresponding author: Wang Chengrun, chengrunwang@163.com
  • Fund Project:
  • 摘要: 为探究羧基化多壁碳纳米管(MWCNTs-COOH)复合镉(Cd)对蚕豆幼苗的毒性效应,利用水培实验研究了MWCNTs-COOH(0、1.5、3.0、6.0和12.0 mg·L-1)与Cd(10 μmol·L-1)单一、复合胁迫下蚕豆幼苗生理的变化。结果表明,MWCNTs-COOH单一处理,随着其浓度的增加,根系活力呈下降趋势,当浓度达到12.0 mg·L-1时,与对照相比下降35.7%;低浓度的MWCNTs-COOH促使叶绿素含量增加,且1.5 mg·L-1 MWCNTs-COOH显著诱导叶中过氧化物酶(POD)活性升高;6.0~12.0 mg·L-1 MWCNTs-COOH促进叶·O2-产生速率加快,超氧化物歧化酶(SOD)活性升高,叶中红褐色斑点增多;MWCNTs-COOH浓度为12.0 mg·L-1时,根·O2-产生速率显著加快,SOD活性下降,根细胞染色加深,死亡加剧。MWCNTs-COOH与Cd复合后,当MWCNTs-COOH低于6.0 mg·L-1,与MWCNTs-COOH单一处理组比较,根系活力未见明显变化;增至6.0 mg·L-1后,根系活力降低至10 μmol·L-1 Cd单独处理组之下。所有复合处理组根和叶丙二醛(MDA)含量皆高于对应的MWCNTs-COOH单一处理,6.0 mg·L-1 MWCNTs-COOH复合Cd诱导根和叶POD活性增加,而12.0 mg·L-1 MWCNTs-COOH与Cd共同作用使叶中红褐色斑点加深且所占叶面积加大,达到64.02%,H2O2含量急剧增加,根尖细胞受损并部分脱落。因此,高浓度的MWCNTs-COOH能够加剧Cd对蚕豆幼苗的氧化胁迫。
  • 加载中
  • Guaglianoni W C, Florence C L, Bonatto F, et al. Novel nanoarchitectured cobalt-doped TiO2 and carbon nanotube arrays:Synthesis and photocurrent performance[J]. Ceramics International, 2019, 45(2):2439-2445
    Ninnora Meethal B, Ramanarayanan R, Swaminathan S. Surface modification of oxygen-deficient ZnO nanotubes by interstitially incorporated carbon:A superior photocatalytic platform for sustainable water and surface treatments[J]. Applied Nanoscience, 2018, 8(6):1545-1555
    王婧雯, 张静静, 范同祥. 碳纳米管表面处理及其在铜基复合材料中的应用[J]. 材料导报, 2018, 32(17):2932-2939

    , 2948 Wang J W, Zhang J J, Fan T X. Process in surface treatment of carbon nanotubes and its applications to copper matrix composites[J]. Materials Review, 2018, 32(17):2932-2939, 2948(in Chinese)

    陈晓, 陈佳辉, 陈日耀, 等. 功能化多壁碳纳米管负载铁离子改性双极膜的制备与表征[J]. 高分子材料科学与工程, 2017, 33(4):148-153

    Chen X, Chen J H, Chen R Y, et al. Preparation and characterization of bipolar membranes modified by functionalized multiwalled carbon nanotubes loaded with Fe3+[J]. Polymer Materials Science & Engineering, 2017, 33(4):148-153(in Chinese)

    Petersen E J, Zhang L W, Mattison N T, et al. Potential release pathways, environmental fate, and ecological risks of carbon nanotubes[J]. Environmental Science & Technology, 2011, 45(23):9837-9856
    贾建博, 江翠娟, 闫兵. 纳米材料在易感群体小鼠模型中的潜在毒性[J]. 科学通报, 2017, 62(24):2749-2757

    Jia J B, Jiang C J, Yan B. Potential nanotoxicity in susceptible populations:Insight from investigation of mouse models[J]. Chinese Science Bulletin, 2017, 62(24):2749-2757(in Chinese)

    Edgington A J, Roberts A P, Taylor L M, et al. The influence of natural organic matter on the toxicity of multiwalled carbon nanotubes[J]. Environmental Toxicology and Chemistry, 2010, 29(11):2511-2518
    Mouchet F, Landois P, Puech P, et al. Carbon nanotube ecotoxicity in amphibians:Assessment of multiwalled carbon nanotubes and comparison with double-walled carbon nanotubes[J]. Nanomedicine, 2010, 5(6):963-974
    Folkrnann J K, Risom L, Jacobsen N R, et al. Oxidatively damaged DNA in rats exposed by oral gavage to C60 fullerenes and single-walled carbon nanotubes[J]. Environmental Health Perspectives, 2009, 117(5):703-708
    Liu S, Wei L, Hao L, et al. Sharper and faster "nanodarts" kill more bacteria:A still of antibacterial activity of individually dispersed pristine single-walled carbon nanotube[J]. ACS Nano, 2009, 3(12):3891-3902
    Parvin B, Ikhtiari R, Fugetsu B, et al. Phytotoxicity of multi-walled carbon nanotubes assessed by selected plant species in the seedling stage[J]. Applied Surface Science, 2012, 262(13):120-124
    Begum P, Ikhtiari R, Fugetsu B. Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce[J]. Carbon, 2011, 49(12):3907-3919
    Khodakovskaya M, Dervishi E, Mahmood M, et al. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth[J]. ACS Nano, 2009, 3(10):3221-3227
    Khodakovskaya M V, Dervishi E, Villagarcia H, et al. Carbon nanotubes induce growth enhancement of tobacco cells[J]. ACS Nano, 2012, 6(3):2128-2135
    Hassan S E, Hijri M, St-Arnaud M. Effect of arbuscular mycorrhizal fungi on trace metal uptake by sunflower plants grown on cadmium contaminated soil[J]. New Biotechnology, 2013, 30(6):780-787
    Sato A, Takeda H, Wataru O, et al. Reduction of cadmium uptake in spinach (Spinacia oleracea L.) by soil amendment with animal waste compost[J]. Journal of Hazardous Materials, 2010, 181(1-3):298-304
    刘俊, 廖柏寒, 曾清如, 等. 镉胁迫对豆科作物生理生态效应研究进展[J]. 生态毒理学报, 2010, 5(2):295-301

    Liu J, Liao B H, Zeng Q R, et al. Advances on physiological and ecological effects of cadmium onlegume crops[J]. Asian Journal of Ecotoxicology, 2010, 5(2):295-301(in Chinese)

    王素娟. 水体重金属污染现状及其治理方法研究[J]. 中国化工贸易, 2015(19):151
    Gomez M R, Cerutti S, Sombra L L, et al. Determination of heavy metals for the quality control in Argentinian herbal medicines by ETAAS and ICP-OES[J]. Food and Chemical Toxicology, 2006, 45(6):1060-1064
    Gupta S K, Chabukdhara M, Singh J, et al. Evaluation and potential health hazard of selected metals in water, sediments, and fish from the Gomti River[J]. Human and Ecological Risk Assessment, 2015, 21(1):227-240
    Zhang X R, Song K H, Liu J F, et al. Sorption of triclosan by carbon nanotubes in dispersion:The importance of dispersing properties using different surfactants[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2019, 562:280-288
    Wang C, Liu H, Chen J, et al. Carboxylated multi-walled carbon nanotubes aggravated biochemical and subcellular damages in leaves of broad bean (Vicia faba L.) seedlings under combined stress of lead and cadmium[J]. Journal of Hazardous Materials, 2014, 274(15):404-412
    胡秉芬, 黄华梨, 季元祖, 等. 分光光度法测定叶绿素含量的提取液的适宜浓度[J]. 草业科学, 2018, 35(8):1965-1974

    Hu B F, Huang H L, Ji Y Z, et al. Evaluation of the optimum concentration of chlorophyll extract for determination of chlorophyll content by spectrophotometry[J]. Pratacultural Science, 2018, 35(8):1965-1974(in Chinese)

    张志勇, 卜晶晶, 王素芳, 等. 冠菌素对不同钾水平下TTC法测定的棉花根系活力的影响[J]. 植物生理学报, 2015, 51(5):695-701

    Zhang Z Y, Bu J J, Wang S F, et al. Effect of coronatine on cotton root activity determined by TTC assay at different levels of potassium[J]. Plant Physiology Journal, 2015, 51(5):695-701(in Chinese)

    李忠光, 龚明. 植物中超氧阴离子自由基测定方法的改进[J]. 云南植物研究, 2005, 27(2):211-216

    Li Z G, Gong M. Improvement of measurement method for superoxide anion radical in plant[J]. Acta Botanica Yunnanica, 2005, 27(2):211-216(in Chinese)

    丛国强, 尹成林, 何邦令, 等. 水分胁迫下内生真菌球毛壳ND35对冬小麦苗期生长和抗旱性的影响[J]. 生态学报, 2015, 35(18):6120-6128

    Cong G Q, Yin C L, He B L, et al. Effect of the endophytic fungus Chaetomium globosum ND35 on the growth and resistance to drought of winter wheat at the seedling stage under water stress[J]. Acta Ecologica Sinica, 2015, 35(18):6120-6128(in Chinese)

    Romero-Puertas M C, Rodriguez-Serrano M, Corpas F J, et al. Cadmium-induced subcellular accumulation of·O2- and H2O2 in pea leaves[J]. Plant, Cell and Environment, 2004, 27(9):1122-1134
    刘楠, 林植芳. 用伊文思蓝染色法检测植物整体叶片的细胞活性[J]. 植物生理学报, 2011, 47(6):570-574

    Liu N, Lin Z F. Use of Evans blue for testing cell viability of intact leaves of plant[J]. Plant Physiology Journal, 2011, 47(6):570-574(in Chinese)

    Rong H, Wang C R, Yu X R, et al. Carboxylated multi-walled carbon nanotubes exacerbated oxidative damage in roots of Vicia faba L. seedlings under combined stress of lead and cadmium[J]. Ecotoxicology and Environmental Safety, 2018, 161:616-623
    Jiang L, Ma L, Sui Y, et al. Effect of manure compost on the herbicide prometryne bioavailability to wheat plants[J]. Journal of Hazardous Materials, 2010, 184(1-3):337-344
    Zhou Z S, Wang S J, Yang Z M. Biological detection and analysis of mercury toxicity to alfalfa (Medicago sativa) plants[J]. Chemosphere, 2008, 70(8):1500-1509
    张栋. 干旱胁迫对苹果光合作用和叶绿素荧光的影响及叶片衰老特性研究[D]. 杨凌:西北农林科技大学, 2011:6-7 Zhang D. Effects of drought stress on photosynthesis and fluorescence chlorophyll parameters of apple leaves and leaf senescence characteristics[D]. Yangling:Northwest A & F University, 2011:6

    -7(in Chinese)

    李香玲, 冯跃华. 水稻根系生长特性及其与地上部分关系的研究进展[J]. 中国农学通报, 2015, 31(6):1-6

    Li X L, Feng Y H. Research advance on relation of aerial part and root traits of rice[J]. Chinese Agricultural Science Bulletin, 2015, 31(6):1-6(in Chinese)

    杨祥宇. 纳米二氧化钛对人工湿地水处理系统的影响机制研究[D]. 重庆:重庆大学, 2018:55-56 Yang X Y. Impacts mechanism of titanium oxidation nanoparticles on functionalities of constructed wetlands[D]. Chongqing:Chongqing University, 2018:55

    -56(in Chinese)

    Begum P, Ikhtiari R, Fugetsu B, et al. Phytotoxicity of multi-walled carbon nanotubes assessed by selected plant species in the seedling stage[J]. Applied Surface Science, 2012, 262:120-124
    Wang H J, Zhou A L, Peng F, et al. Adsorption characteristic of acidified carbon nanotubes for heavy metal Pb(Ⅱ) in aqueous solution[J]. Materials Science and Engineering:A, 2007, 466(1-2):201-206
    Noctor G, Reichheld J P, Foyer C H. ROS-related redox regulation and signaling in plants[J]. Seminars in Cell & Developmental Biology, 2018, 80:3-12
    Segal L M, Wilson R A. Reactive oxygen species metabolism and plant-fungal interactions[J]. Fungal Genetics & Biology, 2018, 110(110):1-9
    Begum P, Ikhtiari R, Fugetsu B. Potential impact of multi-walled carbon nanotubes exposure to the seedling stage of selected plant species[J]. Nanomaterials, 2014, 4(2):203-221
    Begum P, Fugetsu B. Phytotoxicity of multi-walled carbon nanotubes on red spinach (Amaranthus tricolor L.) and the role of ascorbic acid as an antioxidant[J]. Journal of Hazardous Materials, 2012, 243:212-222
    Tan X M, Lin C, Fugetsu B. Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells[J]. Carbon, 2009, 47(15):3479-3487
    刘雪琴. 纳米ZnO/AM真菌对玉米的生物效应及作用机理研究[D]. 重庆:西南大学, 2015:28-29 Liu X Q. Biological effects of nano-ZnO and arbuscular mycorrhizal fungi on maize and its mechanism[D]. Chongqing:Southwest University, 2015:28

    -29(in Chinese)

    邱清华, 邓绍云, 黄娟, 等. 铅胁迫对十字花科种子萌发及幼苗生长的影响[J]. 中国农学通报, 2010, 26(18):175-179

    Qiu Q H, Deng S Y, Huang J, et al. Study on the influence of lead stress on the mustard family's seed sprouting and seedling growing[J]. Chinese Agricultural Science Bulletin, 2010, 26(18):175-179(in Chinese)

    张苗苗. Se4+对Cd2+胁迫下蚕豆根生理生化特性的研究[D]. 成都:四川师范大学, 2008:27-29 Zhang M M. The research on the physiological and chemical characteristic of Vicia faba cultivating in Se-Cd compounds[D]. Chengdu:Sichuan Normal University, 2008:27

    -29(in Chinese)

    俞萍, 高凡, 刘杰, 等. 镉对植物生长的影响和植物耐镉机制研究进展[J]. 中国农学通报, 2017, 33(11):89-95

    Yu P, Gao F, Liu J, et al. Effect of Cd on plant growth and its tolerance mechanism[J]. Chinese Agricultural Science Bulletin, 2017, 33(11):89-95(in Chinese)

    钟建丹, 陈红春, 罗春燕, 等. 碳纳米管与菲暴露对水稻发芽及幼苗生长的影响[J]. 农业环境科学学报, 2018, 37(10):2110-2117

    Zhong J D, Chen H C, Luo C Y, et al. Exposure to carbon nanotube and phenanthrene:Impact on germination and seedling growth of rice[J]. Journal of Agro-Environment Science, 2018, 37(10):2110-2117(in Chinese)

    Seppänen M, Turakainen M, Hartikainen H. Selenium effects on oxidative stress in potato[J]. Plant Science, 2003, 165(2):311-319
    杨淑慎, 高俊凤. 活性氧、自由基与植物的衰老[J]. 西北植物学报, 2001, 21(2):215-220

    Yang S S, Gao J F. Influence of active oxygen and free radicals on plant senescence[J]. Acta Botanica Boreali-Occidentalia Sinica, 2001, 21(2):215-220(in Chinese)

    郭敏, 龚继来, 曾光明. 多壁碳纳米管对水稻幼苗的植物毒性研究[J]. 生态毒理学报, 2016, 11(5):94-102

    Guo M, Gong J L, Zeng G M. Comprehensive phytotoxicity assessment of multi-wall carbon nanotubes on rice seedlings[J]. Asian Journal of Ecotoxicology, 2016, 11(5):94-102(in Chinese)

    罗潇宇, 任垠安, 高浩杰, 等. 羧基化多壁碳纳米管对蛋白核小球藻的生物学效应研究[J]. 生态毒理学报, 2017, 12(5):212-218

    Luo X Y, Ren Y A, Gao H J, et al. Effects of carboxylated multi-walled carbon nanotubes on the physiology of Chlorella pyrenoidosa[J]. Asian Journal of Ecotoxicology, 2017, 12(5):212-218(in Chinese)

  • 加载中
计量
  • 文章访问数:  1713
  • HTML全文浏览数:  1713
  • PDF下载数:  51
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-06-01
刘玲, 许婷婷, 赵薪程, 刘海燕, 戴慧芳, 杨俊文, 汪承润. 羧基化多壁碳纳米管与镉复合干扰蚕豆幼苗生理特性的研究[J]. 生态毒理学报, 2020, 15(6): 252-261. doi: 10.7524/AJE.1673-5897.20190601002
引用本文: 刘玲, 许婷婷, 赵薪程, 刘海燕, 戴慧芳, 杨俊文, 汪承润. 羧基化多壁碳纳米管与镉复合干扰蚕豆幼苗生理特性的研究[J]. 生态毒理学报, 2020, 15(6): 252-261. doi: 10.7524/AJE.1673-5897.20190601002
Liu Ling, Xu Tingting, Zhao Xincheng, Liu Haiyan, Dai Huifang, Yang Junwen, Wang Chengrun. Study on the Disturbation of Physiological Characteristics in Vicia faba L. Seedlings Exposed to Combination of Carboxylated Multi-Walled Carbon Nanotubes and Cadmium[J]. Asian journal of ecotoxicology, 2020, 15(6): 252-261. doi: 10.7524/AJE.1673-5897.20190601002
Citation: Liu Ling, Xu Tingting, Zhao Xincheng, Liu Haiyan, Dai Huifang, Yang Junwen, Wang Chengrun. Study on the Disturbation of Physiological Characteristics in Vicia faba L. Seedlings Exposed to Combination of Carboxylated Multi-Walled Carbon Nanotubes and Cadmium[J]. Asian journal of ecotoxicology, 2020, 15(6): 252-261. doi: 10.7524/AJE.1673-5897.20190601002

羧基化多壁碳纳米管与镉复合干扰蚕豆幼苗生理特性的研究

    通讯作者: 汪承润, E-mail: chengrunwang@163.com
    作者简介: 刘玲(1967-),女,博士,副教授,研究方向为植物生态学及逆境生理学,E-mail:lliiuu494@sina.com
  • 1. 淮南师范学院生物工程学院, 淮南 232038;
  • 2. 资源与环境生物技术安徽普通高校重点实验室, 淮南 232038
基金项目:

安徽省教育厅重点项目(KJ2018A0472);安徽省重大专项项目(18030701189);安徽省自然科学基金资助项目(1608085QC50)

摘要: 为探究羧基化多壁碳纳米管(MWCNTs-COOH)复合镉(Cd)对蚕豆幼苗的毒性效应,利用水培实验研究了MWCNTs-COOH(0、1.5、3.0、6.0和12.0 mg·L-1)与Cd(10 μmol·L-1)单一、复合胁迫下蚕豆幼苗生理的变化。结果表明,MWCNTs-COOH单一处理,随着其浓度的增加,根系活力呈下降趋势,当浓度达到12.0 mg·L-1时,与对照相比下降35.7%;低浓度的MWCNTs-COOH促使叶绿素含量增加,且1.5 mg·L-1 MWCNTs-COOH显著诱导叶中过氧化物酶(POD)活性升高;6.0~12.0 mg·L-1 MWCNTs-COOH促进叶·O2-产生速率加快,超氧化物歧化酶(SOD)活性升高,叶中红褐色斑点增多;MWCNTs-COOH浓度为12.0 mg·L-1时,根·O2-产生速率显著加快,SOD活性下降,根细胞染色加深,死亡加剧。MWCNTs-COOH与Cd复合后,当MWCNTs-COOH低于6.0 mg·L-1,与MWCNTs-COOH单一处理组比较,根系活力未见明显变化;增至6.0 mg·L-1后,根系活力降低至10 μmol·L-1 Cd单独处理组之下。所有复合处理组根和叶丙二醛(MDA)含量皆高于对应的MWCNTs-COOH单一处理,6.0 mg·L-1 MWCNTs-COOH复合Cd诱导根和叶POD活性增加,而12.0 mg·L-1 MWCNTs-COOH与Cd共同作用使叶中红褐色斑点加深且所占叶面积加大,达到64.02%,H2O2含量急剧增加,根尖细胞受损并部分脱落。因此,高浓度的MWCNTs-COOH能够加剧Cd对蚕豆幼苗的氧化胁迫。

English Abstract

参考文献 (50)

返回顶部

目录

/

返回文章
返回