-
当前我国正全面开展臭氧(O3)污染治理攻坚,挥发性有机物(VOCs)作为O3和细颗粒物(PM2.5)的共同前体物[1-6],其污染防治已成为“十四五”重点治理目标。工业源是人为源VOCs最主要来源类之一,根据中国生态环境统计年报[7],全国VOCs年排放量为610.2 万吨,工业源排放占比最高,为35.6%。近年来,生态环境部先后发布《重点行业挥发性有机物综合治理方案》《关于加快解决当前挥发性有机物治理突出问题的通知》等文件,要求强化PM2.5和O3协同控制,推动环境空气质量持续改善和“十四五”VOCs减排目标顺利完成,而青岛市也按照国家、省有关部署积极部署持续开展了VOCs污染治理工作并取得较大成效,包括完成重点行业VOCs治理项目及工业源VOCs排放清单编制[8-9],开展重点区域VOCs走航监测和VOCs重点排放企业监督性监测等[10-12]。
目前,工业源VOCs治理工作主要从源头、过程、末端3个方面开展,即通过低挥发性有机物原辅料替代、生产过程中的废气有效收集、有组织废气末端治理的方式减少VOCs排放[13-17]。其中针对工业源VOCs治理技术相关研究已有许多[18-22],但在青岛本地实际工作中也发现,部分企业仍然存在VOCs治理措施不完善,治理设施运行情况和治理效果不明确等现象,无法有效、准确评估企业VOCs治理现状。因此,本研究拟在青岛市VOCs治理相关研究工作成果基础上,对涉及有机化工、表面涂装和包装印刷等重点行业VOCs治理现状进行调查研究,分析各行业VOCs治理技术应用情况及环境治理成本,深化“十四五”期间青岛本地工业源VOCs污染治理工作,遏制O3污染态势,改善青岛市环境空气质量。
青岛市工业源VOCs治理技术应用及环境治理成本分析
Analysis of application of industrial VOCs treatment technologies and environmental treatment costs in Qingdao
-
摘要: 文章分析了各行业VOCs治理技术应用现状及环境治理成本情况,针对青岛市橡胶和塑料制品业、金属制品业、化学原料和化学制品制造业、汽车制造业等8个重点行业开展了VOCs治理现状进行调查研究。结果表明:青岛市橡胶和塑料制品业、金属制品业在企业数量及VOCs排放量均占优势,属本地特色行业;化学原料和化学制品制造业、汽车制造业虽然企业数量较少但VOCs 排放量占比较高。青岛市目前应用最多的治理技术为光解/光催化,主要应用于橡胶和塑料制品业;冷凝、生物降解技术对废气成分及处理条件有一定要求,导致应用相对受限;RTO、RCO技术运行稳定且处理效率高,但治理成本也较高。青岛市应加快推进低挥发性有机物含量原辅料和产品替代工作,从源头削减VOCs排放,同时建设区域共享喷涂中心、注塑中心等,集中采用RCO、RTO设备进行废气处理,缓解部分企业单独处理高浓度、低排放量、非连续的有机废气而导致的经济压力。Abstract: The current situation of VOCs treatment technology application and environmental treatment costs for various industries in Qingdao are investigated, including rubber and plastic products, metal products, chemical raw materials and chemical products manufacturing, automobile manufacturing, etc. The results show that the rubber and plastic products industry and metal products industry in Qingdao are dominant in the number of enterprises and VOCs emissions, which are local characteristic industries. Although the number of enterprises in chemical raw material and chemical product manufacturing and automobile manufacturing is small, the proportion of VOCs emissions is relatively high. At present, the most widely used treatment technology is photolysis/photocatalysis, which is mainly used in the rubber and plastic products industry. Condensation and biodegradation technologies have certain requirements on exhaust gas components and treatment conditions with a limited applicability. RTO and RCO are operated stably and both of them have a high processing efficiency. However, the cost of governance is high. It is recommended to accelerate the replacement of raw materials with low volatile organic contents, and reduce VOCs emissions from the source. In addition, regional shared spraying centers and injection molding centers using RCO and RTO equipment for waste gas treatment, should be built to alleviate the economic pressure for some enterprises dealing with high-concentration, low-emission, and discontinuous organic waste gas alone.
-
Key words:
- industrial source /
- VOCs treatment technology /
- environmental treatment cost /
- Qingdao
-
表 1 重点行业企业数量分布及VOCs排放量占比情况
Table 1. Distribution of enterprises in key industries and proportion of VOCs emissions
行业 企业数量
占比/%VOCs排放量
占比/%橡胶和塑料制品业 29 26 金属制品业 15 26 化学原料和化学制品制造业 4 14 汽车制造业 6 13 通用/专用设备制造业 24 8 铁路、船舶、航空航天和其
他运输设备制造业4 7 印刷和记录媒介复制业 10 4 家具制造业 8 2 表 2 低VOCs含量原辅料替代进展
Table 2. Development of replacement of raw materials with low VOCs
t/a 含VOCs原辅料使用占比/% 传统溶剂型 水性及其他低挥发性 2019 64 36 2020 57 43 表 3 重点行业低VOCs含量原辅料使用情况(2020年)
Table 3. Utilization of raw materials with low VOCs in key industries (2020)
行业 含VOCs原辅料使用占比/% 传统溶剂型 水性及其他
低挥发性金属制品业 53 47 汽车制造业 58 42 通用/专用设备制造业 80 20 铁路、船舶、航空航天和
其他运输设备制造业68 32 印刷和记录媒介复制业 49 51 家具制造业 26 74 表 4 重点行业主要VOCs治理技术应用情况
Table 4. Application of industrial VOCs treatment technologies in key industries
名称 特点 青岛市应用情况 回收技术 吸附法 设备简单,操作维修方便;进气需要预处理;吸附剂需频繁再生,涉及危废处理;适用于大风量、低温、低湿、中浓度VOCs 主要为组合方式的前端
处理设施使用吸收法 对吸收剂和吸收设备的要求较高,对有机组分选择性大;适用于处理低温、高湿、中浓度的VOCs 与吸附法等技术联合,
或用于其他技术的前处理冷凝法 设备及操作简单,可回收有机物,但对冷凝温度要求严格,净化效率不高,需后续再处理;适用于处理高浓度VOCs 多用于有机化工类行业
某些特定有机物的回收销毁技术 RCO 起燃温度低、处理效率高、催化剂成本高,有燃烧
爆炸的危险,复杂废气需预处理广泛应用于表面涂装、印刷、化工行业,前端一般有活性炭吸附脱附或沸石转轮吸附脱附设备 RTO 处理效率高、运行费用高、可能需要天然气助
燃,会产生NOx二次污染物直接燃烧 高温条件下直接燃烧VOCs废气,适用于高浓度、高热值废气处理 用于涉及涂装工序的行业,
处理高浓度废气生物降解 对生物培养条件要求较高,对处理的VOCs组分有特定选择,处理效果不稳定,适合某些特殊行业,不适用于浓度过高的VOCs 目前青岛本地应用较少,
可处理某些特定VOCs组分光解/光催化 设施简单,运行成本低;对高浓度、大风量废气处理效果不佳,废气需要前处理;催化剂易失活;需定期检查电压、电流、更换灯管 青岛市目前使用最多的设施,但受VOCs成分影响,治理效率变化范围较大,不能确保稳定达标 低温等离子 设备维护简单;投资费用低、运行费用低、能耗低;处理量较小,对电源的要求很高,易产生二次污染 青岛市橡胶和塑料制品行业使用较多,用于处理臭气,对VOCs
去除效率不稳定表 5 青岛市主要VOCs治理技术应用占比情况
Table 5. Proportion of industrial VOCs treatment technologies in Qingdao
治理技术 应用占比/% 光解/光催化 21 吸附法 18 吸附脱附+燃烧 13 光解/光催化+等离子 10 吸附+光解/光催化 9 吸收法 8 直接燃烧 6 冷凝法 4 低温等离子 4 RCO 3 RTO 2 生物降解法 2 表 6 主要VOCs治理技术年均环境治理成本
Table 6. Annual average environmental treatment costs of industrial VOCs treatment technologies
企业所用主
要治理技术平均
去
除率/%年均污染物
去除量/t年均实际治理
成本/万元年均虚拟治理
成本/万元年均环境治理
成本/万元直接燃烧 69 169.78 732.07 327.62 1 059.69 RTO 83 141.31 222.44 45.02 267.46 RCO 90 131.26 279.33 31.04 310.37 冷凝法 47 14.46 32.98 37.38 70.35 光解/光催化 39 9.59 43.88 67.50 111.38 吸收法 57 4.40 76.81 57.94 134.75 生物降解法 52 4.18 87.27 80.55 167.82 吸附法 26 3.79 12.89 35.82 48.71 低温等离子 43 1.46 44.35 57.77 102.12 -
[1] 唐孝炎, 张远航, 邵敏. 大气环境化学[M]. 北京: 高等教育出版社, 2006. [2] VARUTBANGKUL V, BRECHTEL F J, BAHREINI R, et al. Hygroscopicity of secondary organic aerosols formed by oxidation of cycloalkenes, monoterpenes, sesquiterpenes, and related compounds[J]. Atmospheric Chemistry and Physics, 2006, 6(9): 2367 − 2388. doi: 10.5194/acp-6-2367-2006 [3] HALLQUIST M, WENGER J C, BALTENSPERGER U, et al. The formation, properties and impact of secondary organic aerosol; current and emerging issues[J]. Atmospheric Chemistry and Physics, 2009, 9(14): 5155 − 5236. doi: 10.5194/acp-9-5155-2009 [4] HATFIELD M L, HARTZ K E. Secondary organic aerosol from biogenic volatile organic compound mixtures[J]. Atmospheric Environment, 2011, 45(13): 2211 − 2219. doi: 10.1016/j.atmosenv.2011.01.065 [5] LING Z H, GUO H, CHENG H R, et al. Sources of ambient volatile organic compounds and their contributions to photochemical ozone formation at a site in the Pearl River Delta, southern China[J]. Environmental Pollution, 2011, 159(10): 2310 − 2319. doi: 10.1016/j.envpol.2011.05.001 [6] SHAO P, AN J L, XIN J Y, et al. Source apportionment of VOCs and the contribution to photochemical ozone formation during summer in the typical industrial area in the Yangtze River Delta, China[J]. Atmospheric Research, 2016, 176-177: 64 − 74. doi: 10.1016/j.atmosres.2016.02.015 [7] 生态环境部. 2020年中国生态环境统计年报 [EB/OL]. 2022-02-18. https://www.mee.gov.cn/hjzl/sthjzk/sthjtjnb/202202/t20220218_969391.shtml. [8] 薛莲, 徐少才, 孙萌, 等. 气象要素及前体物对青岛市臭氧浓度变化的影响[J]. 中国环境监测, 2017, 33(4): 179 − 185. doi: 10.19316/j.issn.1002-6002.2017.04.22 [9] 吕建华, 李瑞芃, 付飞, 等. 青岛市挥发性有机物排放清单及重点行业排放特征研究[J]. 中国环境管理, 2019, 11(1): 60 − 66. doi: 10.16868/j.cnki.1674-6252.2019.01.060 [10] 李瑞芃, 吕建华, 付飞, 等. 青岛市重点工业行业挥发性有机物对二次污染物生成的贡献及健康风险研究[J]. 环境污染与防治, 2020, 42(2): 87 − 92. doi: 10.15985/j.cnki.1001-3865.2020.02.016 [11] 薛莲, 陈晓峰, 方渊, 等. VOCs走航观测在城市污染源排查中的应用[J]. 中国环境监测, 2020, 36(2): 205 − 213. doi: 10.19316/j.issn.1002-6002.2020.02.23 [12] 徐琬莹, 付飞, 吕建华, 等. 基于LHS-MC青岛市工业源VOCs排放清单及不确定性[J]. 环境科学, 2021, 42(11): 113 − 125. doi: 10.13227/j.hjkx.202103148 [13] 王迪, 赵文娟, 张玮琦, 等. 溶剂使用源挥发性有机物排放特征与污染控制对策[J]. 环境科学研究, 2019, 32(10): 75 − 83. doi: 10.13198/j.issn.1001-6929.2019.09.01 [14] 邵弈欣. 典型行业挥发性有机物排放特征及减排潜力研究[D]. 杭州: 浙江大学, 2019. [15] 梁悦, 施雨其, 麦麦提·斯马义, 等. 农药制造企业的挥发性有机物排放特征及控制研究[J]. 环境污染与防治, 2021, 43(10): 23 − 33. doi: 10.15985/j.cnki.1001-3865.2021.10.004 [16] 王松柏. 塑料行业挥发性有机物VOCs排放特征及防治策略研究[J]. 生态环境与保护, 2021, 4(4): 101 − 104. doi: 10.12238/eep.v4i4.1432 [17] 黄冰, 张炽辉, 何明, 等. 工业源VOCs污染防控对策案例研究[J]. 环境与可持续发展, 2021, 46(2): 104 − 108. doi: 10.19758/j.cnki.issn1673-288x.202102102 [18] 高宗江, 李成, 郑君瑜, 等. 工业源VOCs治理技术效果实测评估[J]. 环境科学研究, 2015, 28(6): 994 − 1000. doi: 10.13198/j.issn.1001-6929.2015.06.22 [19] 苏伟健, 徐绮坤, 黎碧霞, 等. 工业源重点行业VOCs治理技术处理效果的研究[J]. 环境工程, 2016(s1): 518 − 522. [20] 张永明, 邓娟, 梁健. 工业源VOCs末端治理技术浅析及减排展望[J]. 环境影响评价, 2018, 40(2): 62 − 66. doi: 10.14068/j.ceia.2018.02.012 [21] 陆建海, 董事壁, 李文娟, 等. 浙江省工业涂装VOCs治理现状[J]. 环境保护科学, 2018, 44(1): 117 − 125. doi: 10.16803/j.cnki.issn.1004-6216.2018.01.020 [22] 金月正, 金磊, 吴义诚, 等. 厦门市工业源VOCs治理技术及区域性治理效果评估[J]. 环境工程学报, 2021, 15(6): 130 − 139. doi: 10.12030/j.cjee.202008145 [23] 闫家鹏. 大气污染治理设施运行成本分析[J]. 黑龙江科技信息, 2009(28): 217. [24] 杨建军, 董小林, 张振文. 城市大气环境治理成本核算及其总量、结构分析——以西安市为例[J]. 环境污染与防治, 2014, 36(11): 113 − 118. doi: 10.3969/j.issn.1001-3865.2014.11.020 [25] 彭菲, 於方, 马国霞, 等. "2+26"城市"散乱污"企业的社会经济效益和环境治理成本评估[J]. 环境科学研究, 2018, 31(12): 1213 − 1219.