-
随着产业结构的调整转型和“退二进三”“退城进园”相关政策的落实,城市化过程中企业的关停并转遗留了许多亟待修复和再开发的污染场地。污染场地是指由于堆积、存储、处理、处置或其他方式(如迁移)承载了有害物质而对人类健康和生态环境产生潜在威胁的空间区域,这一区域中有害物质的承载体一般包括土壤、地下水及地表水[1]。发达国家的污染场地修复工作起步较早,经过近半个世纪的探索实践与经验积累,管理思想逐渐从污染物彻底清除阶段、基于风险的管理转变为绿色可持续风险管控,主张风险管控技术在社会、环境、经济等多个维度的综合考量。对此,美国州际技术管理委员会(ASTM)、美国环境保护局(US EPA)、国际标准化组织(ISO)、欧洲工业场地修复网络(CLARINET)和美国、英国、荷兰、加拿大等国的可持续修复论坛(SURF)相继发布了一系列实践框架、标准指南和技术评估导则,形成了相对系统完善的污染场地可持续风险管控制度体系[2-6]。至此,以可持续发展理论和风险管理理念为基本原则的污染场地可持续风险管控已成为当前国际社会场地管理领域的重要决策问题和前沿趋势。
我国开展污染场地可持续风险管控的系统研究仅10年有余,虽然仍存在管控体系不完善、可持续影响机制考虑不足等棘手问题,但中国可持续修复论坛(SURF-China)的成立,加上《绿色可持续性修复指南》《污染地块绿色可持续修复通则》《土壤污染防治法》和土壤环境质量标准等系列文件的发布实施都极大地推动了我国污染场地风险管控行业的可持续发展[7]。“十四五”时期我国土壤生态环境保护形势依然严峻,对污染场地的精细化管理和可持续利用提出了更为紧迫的现实需求。然而目前,我国污染场地的污染类型、污染程度、地块数量和分布范围等地域差异较大,同时,污染场地的治理修复费用高昂,现阶段还不具备同时对所有污染场地进行彻底修复的经济实力和技术力量,因此十分有必要开展污染场地可持续风险管控区划研究和分类管理,识别出可持续发展潜力大的场地对其采取优先管控和再开发策略,以实现有限资源的优化配置,同时提高不同利益相关方风险交流、交互决策的有效性。
本研究通过开展污染场地可持续风险管控区划的国内外文献调研,对区划指标体系、区划分级方法、区划管理策略和区划工作流程等相关研究成果进行了系统梳理,将污染场地可持续风险管控区划路径归纳为基于健康风险评价的特定污染场地分区管控、基于风险分级的区域污染场地分类管理和基于污染场地再利用的风险管控区划规划决策等3个方面。可以看出,我国污染场地风险管控区划框架已基本形成,但在指标选取、方法应用和分类标准等关键环节仍存在主观分歧,目前国内还没有形成标准的、可推广的、可操作的区划管理体系与决策支持系统。最后,面向我国“十四五”对土壤环境分类管理的战略部署,紧密结合后修复时代污染场地风险管控的可持续发展趋势,构建契合我国污染场地环境管理实际的可持续风险管控区划体系概念模型,以提高土地利用效率、提升城市功能并最终推动区域社会经济的可持续有序发展。
污染场地可持续风险管控区划研究进展
Research progress on contaminated site regionalization based on sustainable risk management
-
摘要: “十四五”时期我国土壤生态环境保护形势依然严峻,面对污染场地数量多、资金压力大、技术力量薄弱和城市发展用地需求不断扩大等诸多挑战,迫切需要揭示污染场地风险管控与区域可持续发展的交互作用机制,建立污染场地风险管控区划技术体系与分类管理决策支持系统。文章在充分调研国内外已有研究的基础上,从基于健康风险评价的特定污染场地分区管控、基于风险分级的区域污染场地分类管理和基于污染场地再利用的风险管控区划规划决策等3个方面分别阐述了污染场地可持续风险管控区划研究的基本思路,为统筹构建国家层面的区划技术体系提出了完善区划指标体系、兼顾利益相关方诉求和整合有效信息等可优化方向。通过研究进展整理与未来研究展望,以期为我国污染场地风险管控和再利用的分级、分类、分区管理提供精准决策支持,最终推动城市社会经济的可持续有序发展。Abstract: During the 14th Five-Year Plan in China, the situation of soil ecological environment protection is still serious with numerous challenges, for instance, the huge number of contaminated sites, the great financial pressure, the lack of qualified technical personnel and the continuous expansion of urban land. Aiming at establishing the regionalization technical system and classification decision-making support system for risk management of contaminated sites (RMCS), it is urgent to reveal the interaction mechanism between RMCS and regional sustainable development. The paper firstly conducted a systematic analysis of international literatures. Then, the principle idea of sustainable RMCS was elaborated in terms of three aspects, including specific regionalization of RMCS based on health risk assessment, regional classification management of contaminated sites based on risk ranking, and regionalization/planning decision-making based on the redevelopment of contaminated sites. Finally, the optimization direction for the comprehensive establishment of the national regionalization technical system was proposed from three perspectives improving the regionalization index system, involving stakeholders’ considerations and integrating effective information. Supported by the systematic analysis of research progress and prospects, the findings are expected to provide precise decision-making guidance for ranking, classification, regionalization and redevelopment planning of contaminated sites, and lead to the sustainable development of the urban social economy.
-
表 1 污染场地再利用决策影响因素
Table 1. Influencing factors of contaminated site reuse decision
影响因素与相应指标 TONIN
et al[32]AHMAD
et al[33]OSMAN
et al[34]LAPRISE
et al[35]FRANTA
et al[36]KLUSáčEK
et al[38]方彦[41] LIMASSET
et al[42]CHENG
et al[44]场地特征 地基承载力、面积、场地到市中心和国家/国际交通枢纽的距离 √ √ √ √ √ 基础设施
配套周边停车空间,学校、医院、公园、商业中心、运动场及水电气网等服务设施 √ √ √ √ 交通便利性 场地到码头、铁路、主路、地下设施等的距离 √ √ √ √ √ √ 信息可得性 管控成本与时间、环境信息、场地相关信息 √ √ √ √ √ 经济可行性 管控成本、资金激励机制、经济危机、国际投资和银行借贷等资金来源 √ √ √ √ √ 经济效益 投资回报周期、当地经济发展能力、增加税收 √ 土地开发潜力 土地价值、土地未来生产力、潜在
用途√ √ √ 政策管理体系 法律法规或对政府支持、监管机制、奖惩机制、利益相关者冲突 √ √ √ √ √ √ √ √ 技术可
操作性管控目标、管控紧迫性、技术成熟度、专业技术人员 √ 环境风险
与效益污染程度、环保意识、环境公平、环境污染、景观保护、环境质量改善 √ √ √ √ √ 社会属性
与效益就业机会、人口密度、社区活力、历史价值、社会文化功能、人体健康与安全、环境事件中的公众参与 √ √ √ √ √ √ √ 注:√表示对应文献所采用的指标,其余为未采用。 -
[1] 李发生, 颜增光. 污染场地术语手册[M]. 北京: 科学出版社, 2009. [2] 陈卫平, 谢天, 李笑诺, 等. 欧美发达国家场地土壤污染防治技术体系概述[J]. 土壤学报, 2018, 55(3): 527 − 542. [3] SuRF U K. A framework for assessing the sustainability of soil and groundwater remediation[R]. CLAIRE. Contaminated Land: Applications in Real Environments, London, 2010. [4] BARDOS R, BONE B, BOYLE R, et al. The SuRF-UK indicator set for sustainable remediation assessment[R]. CLAIRE. Contaminated Land: Applications in Real Environments, London, 2011. [5] ISO. Soil quality-Sustainable remediation: 18504[S]. London: BSI Standards Limited, 2017. [6] ITRC. Green and sustainable remediation: A practical framework[R]. Washington DC: Interstate Technology & Regulatory Council, 2011. [7] 李笑诺, 易诗懿, 陈卫平. 污染场地风险管控可持续评价指标体系构建及关键影响因素分析[J]. 环境科学, 2022, 43(5): 2769 − 2708. [8] 谭海剑, 黄祖照, 杨巧玲. 遗留工业地块土壤污染详细调查布点密度探讨——基于边际效益递减原理[J]. 环境保护科学, 2021, 47(6): 140 − 144. [9] 戎艳青, 王林芳, 肖艳艳, 等. 不同模型在焦化厂PAHs健康风险评估中的应用[J]. 环境科学与技术, 2021, 44(8): 217 − 225. [10] 陈梦舫, 骆永明, 宋静, 等. 中、英、美污染场地风险评估导则异同与启示[J]. 环境监测管理与技术, 2011, 23(3): 14 − 18. [11] 李宁, 姜昱聪, 贾晓洋, 等. 土壤PM10和PM2.5组分中铬、砷和多环芳烃的累积及健康风险评估[J]. 生态环境学报, 2019, 28(8): 1700 − 1712. [12] 翟美静, 叶雅丽. 化工污染场地土壤污染特征及修复方案分析[J]. 化工管理, 2021(32): 48 − 49. [13] 骆永明, 滕应. 我国土壤污染的区域差异与分区治理修复策略[J]. 中国科学院院刊, 2018, 33(2): 145 − 152. [14] U. S. Environmental Protection Agency. Hazard Ranking System Guidance Manual[EB/OL]. [2022-4-13]. https://nepis.epa.gov/Exe/ZyPDF.cgi/2000IS27.PDF?Dockey=2000IS27.PDF,1992. [15] CCME. National Classification System for Contaminated Sites[EB/OL]. [2022-4-13]. https://s3.documentcloud.org/documents/4325268/CCME-Classification-System.pdf,2008. [16] PIZZOL L, CRITTO A, AGOSTINI P, et al. Regional risk assessment for contaminated sites Part 2: Ranking of potentially contaminated sites[J]. Environment International, 2011, 37(8): 1307 − 1320. doi: 10.1016/j.envint.2011.05.010 [17] JENSEN T S, LERCHE D B, SRENSEN P B. Ranking contaminated sites using a partial ordering method[J]. Environmental Toxicology and Chemistry, 2003, 22(4): 776 − 783. doi: 10.1002/etc.5620220415 [18] 周友亚, 颜增光, 郭观林, 等. 污染场地国家分类管理模式与方法[J]. 环境保护, 2007(10): 32 − 35. [19] 余勤飞, 文方, 侯红, 等. 发达国家污染场地分类机制及其对中国的启示[J]. 环境污染与防治, 2010, 32(11): 78 − 83. [20] 余勤飞, 侯红, 白中科, 等. 中国污染场地国家分类体系框架构建[J]. 农业工程学报, 2013, 29(12): 228 − 234. [21] 单艳红, 林玉锁, 王国庆. 加拿大污染场地的管理方法及其对我国的借鉴[J]. 生态与农村环境学报, 2009, 25(3): 90 − 93. [22] 单艳红, 王国庆, 张孝飞, 等. 中国污染场地分类管理程序与方法研究[J]. 中国人口·资源与环境, 2011, 21(12): 75 − 80. [23] 陈红枫, 吕星辰. 工业污染场地分类管理模糊综合评价方法[J]. 安徽农业大学学报, 2018, 45(4): 682 − 689. [24] LI T, LIU Y, BJERG P L. Prioritization of potentially contaminated sites: A comparison between the application of a solute transport model and a risk-screening method in China[J]. Journal of Environmental Management, 2021, 281(8): 111765. [25] JIANG Y F, WANG H L, LEI M, et al. An integrated assessment methodology for management of potentially contaminated sites based on public data[J]. Science of the Total Environment, 2021, 783: 146913. doi: 10.1016/j.scitotenv.2021.146913 [26] LI X N, XIAO R B, CHEN W P, et al. A conceptual framework for classification management of contaminated sites in Guangzhou, China[J]. Sustainability, 2017, 9(3): 362. doi: 10.3390/su9030362 [27] ZABEO A, PIZZOL L, AGOSTINI P, et al. Regional risk assessment for contaminated sites Part 1: Vulnerability assessment by multi criteria decision analysis[J]. Environment International, 2010, 37(8): 1295 − 1306. [28] AGOSTINI P, PIZZOL L, CRITTO A, et al. Regional risk assessment for contaminated sites Part 3: Spatial decision support system[J]. Environment International, 2012, 48: 121 − 132. [29] SAM K, COULON F, PRPICH G. A multi-attribute methodology for the prioritisation of oil contaminated sites in the Niger Delta[J]. Science of the Total Environment, 2017, 579: 1323 − 1332. doi: 10.1016/j.scitotenv.2016.11.126 [30] 金远亮, 侯德义, 田莉, 等. 基于用地规划的污染地块修复多目标优化研究[J]. 中国环境科学, 2021, 41(2): 787 − 800. [31] BARTKE S, MARTINÁT S, KLUSÁČEK P, et al. Targeted selection of brownfields from portfolios for sustainable regeneration: User experiences from five cases testing the Timbre Brownfield Prioritization Tool[J]. Journal of Environmental Management, 2016, 184(1): 94 − 107. [32] TONIN S, BONIFACI P. Assessment of brownfield redevelopment opportunities using a multi-tiered approach: A case in Italy[J]. Socio-Economic Planning Sciences, 2020, 71: 100812. doi: 10.1016/j.seps.2020.100812 [33] AHMAD N, ZHU Y M, SHAFAIT Z, et al. Critical barriers to brownfield redevelopment in developing countries: The case of Pakistan[J]. Journal of Cleaner Production, 2019, 212: 1193 − 1209. doi: 10.1016/j.jclepro.2018.12.061 [34] OSMAN R, FRANTÁL B, KLUSÁČEK P, et al. Factors affecting brownfield regeneration in post-socialist space: The case of the Czech Republic[J]. Land Use Policy, 2015, 48: 309 − 316. doi: 10.1016/j.landusepol.2015.06.003 [35] LAPRISE M, LUFKIN S, REY E. An operational monitoring tool facilitating the transformation of urban brownfields into sustainable neighborhoods[J]. Building and Environment, 2018, 142: 221 − 233. doi: 10.1016/j.buildenv.2018.06.005 [36] FRANTÁL B, KUNC J, KLUSÁČEK P, et al. Assessing success factors of brownfields regeneration: International and inter-stakeholder perspective[J]. Transylvanian Review of Administrative Sciences, 2015, 11(44): 91 − 107. [37] SOUSA C D. Brownfield redevelopment versus greenfield development: A private sector perspective on the costs and risks associated with brownfield redevelopment in the Greater Toronto Area[J]. Journal of Environmental Planning and Management, 2000, 43(6): 831 − 853. doi: 10.1080/09640560020001719 [38] KLUSÁČEK P, ALEXANDRESCU F, OSMAN R, et al. Good governance as a strategic choice in brownfield regeneration: Regional dynamics from the Czech Republic[J]. Land Use Policy, 2018, 73: 29 − 39. doi: 10.1016/j.landusepol.2018.01.007 [39] NORRMAN J, VOLCHKO Y, HOOIMEIJER F, et al. Integration of the subsurface and the surface sectors for a more holistic approach for sustainable redevelopment of urban brownfields[J]. Science of the Total Environment, 2016, 563/564: 879 − 889. doi: 10.1016/j.scitotenv.2016.02.097 [40] ALBERINI A, LONGOC A, TONIND S, et al. The role of liability, regulation and economic incentives in brownfield remediation and redevelopment: evidence from surveys of developers[J]. Regional Science and Urban Economics, 2005, 35: 327 − 351. doi: 10.1016/j.regsciurbeco.2004.05.004 [41] 方彦. 棕地再开发适宜性评价研究——以无锡市原惠山农药厂为例[D]. 南京: 南京农业大学, 2009. [42] LIMASSET E, PIZZOL L, MERLY C, et al. Points of attention in designing tools for regional brownfield prioritization[J]. Science of the Total Environment, 2018, 622/623: 997 − 1008. doi: 10.1016/j.scitotenv.2017.11.168 [43] CHRYSO-CHOOUA M, BROWNA K, DAHAL G, et al. A GIS and indexing scheme to screen brownfields for area-wide redevelopment planning[J]. Landscape and Urban Planning, 2012, 105: 187 − 198. doi: 10.1016/j.landurbplan.2011.12.010 [44] CHENG F F, GEERTMAN S C M, KUFFER M K, et al. An integrative methodology to improve brownfield redevelopment planning in Chinese cities: A case study of Futian, Shenzhen[J]. Computers, Environment and Urban Systems, 2011, 35(5): 388 − 398. doi: 10.1016/j.compenvurbsys.2011.05.007 [45] CHEN Y, HIPEL K W, KILGOUR D M, et al. A strategic classification support system for brownfield redevelopment[J]. Environmental Modelling and Software, 2009, 24(5): 647 − 654. doi: 10.1016/j.envsoft.2008.10.011 [46] HOU D Y, SONG Y N, ZHANG J L, et al. Climate change mitigation potential of contaminated land redevelopment: A city-level assessment method[J]. Journal of Cleaner Production, 2018, 171: 1396 − 1406. doi: 10.1016/j.jclepro.2017.10.071 [47] ZHANG L M, GENG Y, DONG H J, et al. Emergy-based assessment on the brownfield redevelopment of one old industrial area: A case of Tiexi in China[J]. Journal of Cleaner Production, 2016, 114: 150 − 159. doi: 10.1016/j.jclepro.2015.05.065 [48] KOLOSZ B W, ATHANASIADISC I N, CADISCH G, et al. Conceptual advancement of socio-ecological modelling of ecosystem services for re-evaluating Brownfield land[J]. Ecosystem Services, 2018, 33: 29 − 39. doi: 10.1016/j.ecoser.2018.08.003 [49] PIZZOL L, ZABEO A, KLUSÁČEK P, et al. Timbre Brownfield Prioritization Tool to support effective brownfield regeneration[J]. Journal of Environmental Management, 2016, 166: 178 − 192. [50] RIZZOA E, PESCEA M, PIZZOL L, et al. Brownfield regeneration in Europe: Identifying stakeholder perceptions, concerns, attitudes and information needs[J]. Land Use Policy, 2015, 48: 437 − 453. doi: 10.1016/j.landusepol.2015.06.012 [51] DOICK K J, SELLERS G, CASTAN-BROTO V, et al. Understanding success in the context of brownfield greening projects: The requirement for outcome evaluation in urban greenspace success assessment[J]. Urban Forestry & Urban Greening, 2009, 8: 163 − 178. [52] LI X N, BARDOS P, CUNDY A B, et al. Using a conceptual site model for assessing the sustainability of brownfield regeneration for a soft reuse: A case study of Port Sunlight River Park (U. K. )[J]. Science of the Total Environment, 2018, 652: 810 − 821. [53] 汤辉, 沈守云, 朱凯. 土地紧缩政策下棕地更新为社区公园的策略[J]. 福建林业科技, 2015, 42(2): 231 − 235. [54] CUNDY A B, BARDOS R P, PUSCHENREITER M, et al. Brownfields to green fields: Realising wider benefits from practical contaminant phytomanagement strategies[J]. Journal of Environmental Management, 2016, 184(1): 67 − 77. [55] WANG J X, BANZHAF E. Towards a better understanding of Green Infrastructure: A critical review[J]. Ecological Indicators, 2018, 85: 758 − 772. doi: 10.1016/j.ecolind.2017.09.018 [56] 曹康, 金涛. 国外“棕地再开发”土地利用策略及对我国的启示[J]. 中国人口·资源与环境, 2007, 17(6): 124 − 129. [57] BEAMES A, BROEKXA S, SCHNEIDEWIND U, et al. Amenity proximity analysis for sustainable brownfield redevelopment planning[J]. Landscape and Urban Planning, 2018, 171: 68 − 79. doi: 10.1016/j.landurbplan.2017.12.003 [58] MORIO M, SCHÄDLER S, FINKEL M. Applying a multi-criteria genetic algorithm framework for brownfield reuse optimization: Improving redevelopment options based on stakeholder preferences[J]. Journal of Environmental Management, 2013, 130: 331 − 346. doi: 10.1016/j.jenvman.2013.09.002 [59] SCHÄDLER S, MORIO M, BARTKE S, et al. Integrated planning and spatial evaluation of megasite remediation and reuse options[J]. Journal of Contaminant Hydrology, 2011, 127: 88 − 100. [60] MARTINÁT S, NAVRÁTIL J, PÍCHA K, et al. Brownfield regeneration from the perspective of residents: Place circumstances versus character of respondents[J]. Deturope, 2017, 9(2): 71 − 92. doi: 10.32725/det.2017.013 [61] MARTINAT S, NAVRATIL J, HOLLANDER J B, et al. Re-reuse of regenerated brownfields: Lessons from an Eastern European post-industrial city[J]. Journal of Cleaner Production, 2018, 188: 536 − 545. doi: 10.1016/j.jclepro.2018.03.313 [62] NAVRATIL J, KREJCI T, MARTINAT S, et al. Brownfields do not “only live twice”: The possibilities for heritage preservation and the enlargement of leisure time activities in Brno, the Czech Republic[J]. Cities, 2018, 74: 52 − 63. doi: 10.1016/j.cities.2017.11.003 [63] KIM E J, MILLER P. Residents’ perception of local brownfields in rail corridor area in the city of Roanoke: The effect of people’s preconception and health concerns factors[J]. Journal of Environmental Planning and Management, 2017, 60(5): 862 − 882. doi: 10.1080/09640568.2016.1182898