-
随着城市的发展,城市中光化学污染日趋严重,臭氧已成为近年来人们非常关注的影响空气质量的污染物之一。研究表明,地面臭氧浓度的增高,将对人类的身体健康带来损害[1],尤其对呼吸系统影响严重[2],甚至会提高死亡率[3]。过去几十年里,臭氧浓度在我国大部分地区都呈现快速上升趋势[4],尤其在我国部分经济较为发达、人口密集的地区,如京津冀、长三角和珠三角等地,光化学污染日趋严重[5-8]。作为长三角主要城市之一,杭州市机动车保有量、煤炭消耗量和工业产量不断增加,但杭州市三面环山地形条件,使得大气扩散条件弱于开阔平原地区及沿海地区,污染物极易聚集[9],杭州也因此面临较为严重的臭氧污染问题[10-11]。尤其在夏秋季节,杭州以晴好天气为主,气温高、大气层结稳定,臭氧问题更加凸显[12-14]。
2023年9和10月,杭州市将举办第十九届亚运会及亚残运会。而9和10月也是杭州市臭氧污染发生较多的月份。为了做好亚运会及亚残运会期间的大气环境保障,更好应对臭氧污染问题,本研究利用2016~2021年杭州市空气质量数据,并结合天气条件分析亚运会及亚残运会同期臭氧的变化特点,以期为客观认识臭氧浓度变化特征及提前制定有效的减排及管控策略提供一定的科学依据。
杭州市亚运会、亚残运会同期臭氧污染及气象特征研究
Study on characteristics of ozone pollution and meteorology in Hangzhou during same period of Asian Games and Asian Para Games
-
摘要: 利用2016~2021年9和10月杭州市环境空气质量国控监测站点臭氧监测资料,分析2023年亚运会及亚残运会同期杭州市臭氧浓度变化特征,并结合气象资料分析不同气象因素与臭氧浓度之间的关系。结果表明,2016~2021年间,杭州市9和10月臭氧日最大8小时滑动平均第90百分位数最高已达到208和160 μg/m³,臭氧污染严重,臭氧超标天数多;高温、低湿是导致臭氧污染的重要天气因素,当日最高温度高于28 ℃、湿度低于80%时,极易产生臭氧污染天;低风速以及偏东风、偏南风条件下也较容易产生臭氧污染。根据近5年情况预计,2023年9月,杭州将出现10 d左右臭氧污染天;10月,将出现3 d左右臭氧污染天。在出现气温较高、湿度较低、风速较低的天气情况时,应当提前落实减排和管控措施,从而降低臭氧污染浓度,提升空气质量。Abstract: Based on the ozone data monitored by Hangzhou state-controlled ambient air quality monitoring sites in September and October from 2016 to 2021, this study analyzed the characteristics of the surface ozone concentration during the same period of the Asian Games and the Asian Para Games in Hangzhou, 2023. Furthermore, the relationship between meteorological conditions and the ozone concentration was also studied. The results showed that the highest 90th percentile of O3-8 h in Hangzhou could reach 208 and 160 μg/m³ in September and October for the past 5 years, thus indicating a severe ozone pollution and excessive number of days. Higher temperature and lower relative humidity were the most important factors related to the ozone pollution. The ozone concentration was in an excessive condition when the daily highest temperature was up to 28℃ and relative humidity was lower than 80%. Moreover, a low wind speed and an easterly wind or a southerly wind could also cause the ozone pollution. According to the situation in the past five years, there would be about 10 days for the ozone pollution in September and about 3 days for the ozone pollution in October in 2023. Therefore, the emission reduction and control measures should be implemented to reduce the ozone pollution concentration and improve the air quality with the weather condition of a higher temperature, a low humidity and a low wind speed.
-
[1] NORVAL M, LUCAS R M, CULLEN A P, et al. The human health effects of ozone depletion and interactions with climate change[J]. Photochemical & Photobiological Sciences, 2011, 10(2): 1 − 28. [2] ZWICK H, POPP W, WAGNER C, et al. Effects of ozone on the respiratory health, allergic sensitization, and cellular immune system in children.[J]. The American Review of Respiratory Disease, 1991, 144(5): 1075 − 1079. doi: 10.1164/ajrccm/144.5.1075 [3] GRYPARIS A, FORSBERG B, KATSOUYANNI K, et al. Acute effects of ozone on mortality from the air pollution and health[J]. American Journal of Respiratory & Critical Care Medicine, 2004, 170(10): 1080 − 1087. [4] XU X, LIN W, WANG T, et al. Long-term trend of surface ozone at a regional background station in eastern China 1991–2006: enhanced variability[J]. Atmospheric Chemistry and Physics, 2008, 8(10): 2595 − 2607. doi: 10.5194/acp-8-2595-2008 [5] 程麟钧, 王帅, 宫正宇, 等. 中国臭氧浓度的时空变化特征及分区[J]. 中国环境科学, 2017, 37(11): 4003 − 4012. doi: 10.3969/j.issn.1000-6923.2017.11.001 [6] 余益军, 孟晓艳, 王振, 等. 京津冀地区城市臭氧污染趋势及原因探讨[J]. 环境科学, 2020, 41(1): 106 − 114. [7] 单源源, 李莉, 刘琼, 等. 长三角地区典型城市臭氧及其前体物时空分布特征[J]. 沙漠与绿洲气象, 2016, 10(5): 72 − 78. doi: 10.3969/j.issn.1002-0799.2016.05.011 [8] 张莹, 岳玎利, 江明, 等. 珠江三角洲臭氧污染特征与趋势初步分析[J]. 广东化工, 2016, 43(12): 152 − 153. doi: 10.3969/j.issn.1007-1865.2016.12.074 [9] 齐冰, 刘寿东, 杜荣光, 等. 杭州地区气候环境要素对霾天气影响特征分析[J]. 气象, 2012, 38(10): 1225 − 1231. doi: 10.7519/j.issn.1000-0526.2012.10.008 [10] 陈超, 严仁嫦, 叶辉, 等. 杭州市臭氧污染特征研究[J]. 环境污染与防治, 2019, 41(3): 339 − 342. doi: 10.15985/j.cnki.1001-3865.2019.03.017 [11] 齐冰, 牛或文, 杜荣光, 等. 杭州市近地面大气臭氧浓度变化特征分析[J]. 中国环境科学, 2017, 37(2): 443 − 451. [12] 严仁嫦, 叶辉, 林旭, 等. 杭州市臭氧污染特征及影响因素分析[J]. 环境科学学报, 2018, 38(3): 1128 − 1136. doi: 10.13671/j.hjkxxb.2017.0430 [13] 严宇, 田旭东, 王雪松, 等. 杭州市夏季臭氧污染的气象与传输特征分析[J]. 环境污染与防治, 2021, 43(2): 182 − 187. [14] 洪盛茂, 焦荔, 何曦, 等. 杭州市区大气臭氧浓度变化及气象要素影响[J]. 应用气象学报, 2009, 20(5): 602 − 611. doi: 10.3969/j.issn.1001-7313.2009.05.012 [15] HESS G D, CARNOVALE F, COPE M E, et al. The evaluation of some photochemical smog reaction mechanisms—I. Temperature and initial composition effects[J]. Atmospheric Environment, 1992, 26(4): 625 − 641. doi: 10.1016/0960-1686(92)90174-J [16] BELAN B D, SAVKIN D, TOLMACHEV G. The relationship between ozone formation and air temperature in the atmospheric surface layer[C]//Egu General Assembly Conference. EGU General Assembly Conference Abstracts, 2016. [17] 石志平, 王文生. 相对湿度变化对臭氧分解速率的影响[J]. 保鲜与加工, 2004, 4(6): 24 − 25. doi: 10.3969/j.issn.1009-6221.2004.06.012 [18] 栗泽苑, 杨雷峰, 华道柱, 等. 2013—2018年中国近地面臭氧浓度空间分布特征及其与气象因子关系的研究[J]. 环境科学研究, 2021, 34(9): 2094 − 2104. [19] 安俊琳. 北京大气臭氧浓度变化特征及其形成机制研究[D]. 南京: 南京信息工程大学, 2007. [20] 韩明山, 梅宁, 陈丽飞. 风向变化对城市大气污染的影响及试验分析[J]. 能源环境保护, 2004, 18(5): 56 − 59. doi: 10.3969/j.issn.1006-8759.2004.05.018