-
挥发性有机物(volatile organic compounds,VOCs)是大气中普遍存在的一类化合物,是形成光化学烟雾的前体物,具有相对分子质量小、沸点较低、饱和蒸汽压高和亨利常数较大等特征[1-2]。VOCs主要来源于各种自然源和人为源的直接排放,其中人为源的贡献巨大[3-6]。近年来,随着经济全球化和市场经济的快速发展,以臭氧为特征污染物的大气光化学污染成为我国城市区域越来越突出的大气环境问题[7]。汕头市以臭氧为首要污染物的污染天数占比自2016年起逐年升高,2017年和2018年所有污染天气首要污染物均为臭氧,且污染浓度呈上升态势。从臭氧的生成机制来看,近地面臭氧是氮氧化物(NOx)、VOCs等前体物,在太阳辐射的作用下,经一系列光化学反应生成的二次污染物[8]。在城市地区,控制VOCs排放是减少臭氧污染的有效途径[6]。因此,许多学者对不同地区的大气VOCs的浓度水平、来源、光化学反应机制及VOCs对臭氧生成的贡献等方面进行研究,并提出相应的臭氧控制方案[6, 9],如广州[10-12]、北京[11, 13]、上海[11, 14]、中国香港特别行政区[12, 15]、兰州[11]、重庆[16]和南京[2]等。
围绕打赢蓝天保卫战和空气质量持续改善的紧迫需求,汕头市亟须弄清导致本地臭氧污染的关键因素。基于历年汕头市臭氧污染统计数据,本文选取臭氧污染最严重的濠江区为研究对象,选择臭氧污染最突出的10月为监测时段,开展大气O3、VOCs、NOx、CO和气象参数的外场观测,获得高质量和高时间分辨率的成套实测数据。运用PMF模型软件开展大气VOCs的来源解析,分析VOCs的主要排放源及其贡献的时空变化;利用OBM模型对臭氧污染过程中的局地臭氧光化学的收支和主控因子进行了系统分析[16];结合PMF模型初步评估各类排放源减排的成效,提出臭氧污染防治的措施建议。
汕头市城区大气VOCs来源解析及其对臭氧生成的影响
Source analysis of volatile organic compounds and its influence on ozone formation in urban area of Shantou
-
摘要: 利用超低温预浓缩GC-MS法于2019年10月对汕头市濠江区大气挥发性有机物(VOCs)进行在线实时观测,研究其污染特征、来源以及对臭氧生成的影响,并探讨关键VOCs活性物种及来源。研究发现,大气VOCs中烷烃含量占比最高;利用PMF模型确定6类排放源:机动车排放源(38.0%)、溶剂使用源(20.4%)、汽油泄露与挥发源(16.5%)、化工排放源(11.7%)、油燃烧源(7.9%)、植物排放源(5.5%);利用OBM模型对臭氧污染过程进行分析:濠江区具有显著的局地光化学臭氧污染潜势;臭氧生成主要受人为源VOCs控制与影响;人为源VOCs的5种关键活性物种分别为间/对二甲苯,甲苯和其他低活性芳香烃类,C6以上活性较大的烷烃,直链烯烃和支链烯烃;关键活性物种主要来源为溶剂使用源(32.4%),其次为机动车排放源(20.9%)和汽油泄露与挥发源(15.5%)。
-
关键词:
- 挥发性有机物 /
- 来源解析 /
- 臭氧 /
- 基于观测的模型(OBM) /
- 相对增量反应活性(RIR)
Abstract: The ultra-low temperature preconcentration GC-MS method was used to perform an online real-time observation of the atmospheric volatile organic compounds (VOCs) in Haojiang district of Shantou in October 2019. The pollution characteristics, sources and the influence on the ozone formation were studied, and the key VOCs active species and sources were also investigated. The research showed that the alkanes were the composition with the most content in the VOCs. Six categories of VOC sources were identified by the PMF model, including vehicle emission sources (38.0%), solvent use sources (20.4%), gasoline leakage and volatile sources (16.5%), industrial production process sources (11.7%), oil combustion source (7.9%) and plant emission sources (5.5%). The OBM model was used to analyze the process of the ozone pollution. There was an obvious potential of a photochemical ozone pollution in Haojiang district. The ozone formation was mainly controlled and influenced by the human source VOCs. Five key VOCs active species contained m-para-xylene, toluene and other aromatic hydrocarbons with a low activity, alkanes with a higher activity above C6, linear and branched alkenes. The main sources of the key active species were solvent use sources (32.4%), followed by vehicle emission sources (20.9%) and gasoline leakage and volatile sources (15.5%). -
表 1 OBM-RACM2模型物种
模型物种 描述 ACE 乙炔 ETH 乙烷 HC3 3~4个碳的低活性烷烃 HC5 4~8个碳较低活性的烷烃 HC8 6个及以上碳数的较高活性的烷烃 ETE 乙烯 OLI 支链烯烃 OLT 直链烯烃 ISO 异戊二烯 BEN 苯 TOL 甲苯和其他低活性芳香烃 XYO 邻二甲苯 XYM 间/对二甲苯 表 2 大气VOCs来源贡献比
大气VOCs来源 贡献比/% 机动车排放源 38.0 汽油泄露与挥发源 16.5 植物排放源 5.5 溶剂使用源 20.4 油燃烧源 7.9 化工排放源 11.7 表 3 各类VOCs于观测期间与臭氧污染日的RIR值
VOCs组分 RIR值(%/%) 模型物种 RIR值(%/%) 观测期间 污染日 观测期间 污染日 烷烃 0.234 0.347 ETH 0.006 0.005 HC3 0.064 0.080 HC5 0.049 0.067 HC8 0.137 0.191 烯烃 0.289 0.298 ETE 0.072 0.061 OLI 0.146 0.146 OLT 0.089 0.089 炔烃 0.003 0.002 ACE 0.003 0.002 芳香烃 0.291 0.359 BEN 0.008 0.007 TOL 0.096 0.120 XYO 0.046 0.054 XYM 0.164 0.188 表 4 关键组分来源贡献比
关键组分来源 贡献比/% 机动车排放源 24.7 汽油泄露与挥发源 15.5 植物排放源 7.6 溶剂使用源 32.4 油燃烧源 12.2 化工排放源 7.6 -
[1] 唐孝炎, 张远航, 邵敏, 等. 大气环境化学[M]. 2版. 北京: 高等教育出版社, 2006. [2] 张玉欣, 安俊琳, 王俊秀, 等. 南京工业区挥发性有机物来源解析及其对臭氧贡献评估[J]. 环境科学, 2018, 39(2): 503 − 510. [3] ZHANG J, WANG T, CHAMEIDES W L, et al. Source characteristics of volatile organic compounds during high ozone episodes in Hong Kong, Southern China[J]. Atmospheric Chemistry and Physics, 2008, 8(16): 4983 − 4996. doi: 10.5194/acp-8-4983-2008 [4] GUO H, WANG T, SINPSON I J, et al. Source contributions to ambient VOCs and CO at a rural site in Eastern China[J]. Atmospheric Environment, 2004, 38(27): 4551 − 4560. doi: 10.1016/j.atmosenv.2004.05.004 [5] 陆思华, 白郁华, 张广山, 等. 大气中挥发性有机化合物(VOCs)的人为来源研究[J]. 环境科学学报, 2006(5): 757 − 763. [6] 曾沛, 郭海, 梁胜文, 等. 武汉市大气VOCs污染特征及其对臭氧生成的影响[J]. 环境科学与技术, 2018, 41(7): 117 − 124. [7] 司雷霆, 王浩, 李洋, 等. 太原市夏季大气VOCs污染特征及臭氧生成潜势[J]. 中国环境科学, 2019, 39(9): 3655 − 3662. [8] FISHMAN J, CRUTZEN P J. The origin of ozone in the troposphere[J]. Nature, 1978, 274(5674): 855 − 858. doi: 10.1038/274855a0 [9] LING Z H, GUO H. Contribution of VOC sources to photochemical ozone formation and its control policy implication in Hong Kong[J]. Environmental Science & Policy, 2014(38): 180 − 191. [10] 高东峰, 张远航, 曹永强, 等. 应用OBM模型研究广州臭氧的生成过程[J]. 环境科学研究, 2007, 20(1): 47 − 51. [11] XUE L, WANG T, GAO J, et al. Ground-level ozone in four Chinese cities: precursors, regional transport and heterogeneous processes[J]. Atmospheric Chemistry and Physics, 2014, 14(23): 13175 − 13188. doi: 10.5194/acp-14-13175-2014 [12] LU K D, ZHANG Y H, SU H, et al. Regional ozone pollution and key controlling factors of photochemical ozone production in Pearl River Delta during summer time[J]. Science China Chemistry, 2010, 53: 651 − 663. doi: 10.1007/s11426-010-0055-6 [13] LIU Z, WANG Y, GU D, et al. Summertime photochemistry during CARE Beijing-2007: ROx budgets and O3 formation[J]. Atmospheric Chemistry and Physics, 2012, 12(16): 7737 − 7752. doi: 10.5194/acp-12-7737-2012 [14] GENG F H, ZHAO C S, TANG X, et al. Analysis of ozone and VOCs measured in Shanghai: A case study[J]. Atmos Environ, 2007, 41: 989 − 1001. doi: 10.1016/j.atmosenv.2006.09.023 [15] XUE L K, WANG T, LOUIE P K K, et al. Increasing external effects negate local efforts to control ozone air pollution: A case study of Hong Kong and implications for other Chinese cities[J]. Environment Science&Technoloy, 2014, 48(18): 10769 − 10775. [16] 苏榕, 陆克定, 余家燕, 等. 基于观测模型的重庆大气臭氧污染成因与来源解[J]. 中国科学: 地球科学, 2018, 48(1): 102 − 112. [17] GARY N, RACHELLE Dl. EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals & User Guide [P]. USA: EPA, 2014. [18] 吴琳, 薛丽坤, 王文兴. 基于观测的臭氧污染研究方法[J]. 地球环境学报, 2017(6): 479 − 491. [19] STOCKWELL W R, KIRCHNER F, KUHN M, et al. A new mechanism for regional atmospheric chemistry modeling[J]. Journal of Geophysical Research Atmospheres, 1997, 102(D22): 25847 − 25879. doi: 10.1029/97JD00849 [20] WANG M, CHEN W T, ZHANG L, et al. Ozone pollution characteristics and sensitivity analysis using an observation-based model in Nanjing, Yangtze River Delta Region of China[J]. Journal of Environmental Sciences, 2020, 93: 13 − 22. doi: 10.1016/j.jes.2020.02.027 [21] YU D, TAN Z, LU, K, et al. Observation-based modelling of ozone formation in Shenzhen China[J]. Atmospheric Environment, 2020. doi: 10.1016/j.atmosenv.2020.117304 [22] QIN Y, WALK T, GARY T, et al. C2-C10 nonmethane hydrocarbons measured in Dallas, USA-Seasonal trends and diurnal characteristics[J]. Atmospheric Environment, 2007, 41(28): 6018 − 6032. doi: 10.1016/j.atmosenv.2007.03.008 [23] GUO H, SO K L, SIMPSON I J, et al. C1-C8 volatile organic compounds in the atmosphere of Hong Kong: Overview of atmospheric processing and source apportionment[J]. Atmospheric Environment, 2007, 41(7): 1456 − 1472. doi: 10.1016/j.atmosenv.2006.10.011 [24] 王倩, 陈长虹, 王红丽, 等. 上海市秋季大气VOCs对二次有机气溶胶的生成贡献及来源研究[J]. 环境科学, 2013, 34(2): 424 − 433. [25] 冯小琼, 彭康, 凌镇浩, 等. 香港地区2005~2010年VOCs污染来源解析及特征研究[J]. 环境科学学报, 2013, 33(1): 173 − 180. [26] PEKEY B, YILMAZ H. The use of passive sampling to monitor spatial trends of volatile organic compounds (VOCs) at an industrial city of Turkey[J]. Microchemical Journal, 2011, 97(2): 213 − 219. doi: 10.1016/j.microc.2010.09.006 [27] BARLETTA B, MEINARDI S, SIMPSON I J, et al. Mixing ratios of volatile organic compounds (VOCs) in the atmosphere of Karachi, Pakistan[J]. Atmospheric Environment, 2002, 36(21): 3429 − 3443. doi: 10.1016/S1352-2310(02)00302-3 [28] 张俊刚, 王跃思, 王珊, 等. 北京市大气中NMHC的来源特征研究[J]. 环境科学与技术, 2009, 32(5): 35 − 38. [29] SHAO P, AN J, XIN J, et al. Source apportionment of VOCs and the contribution to photochemical ozone formation during summer in the typical industrial area in the YangtzeRiver Delta, China[J]. Atmospheric Research, 2016, 176-177: 64 − 74. doi: 10.1016/j.atmosres.2016.02.015 [30] AUNETH A, MONSON R K, SCHURGERS G, et al. Why are estimates of global terrestrial isoprene emissions so similar (and why is this not so for monoterpenes)[J]. Atmospheric Chemistry and Physics, 2008, 8(16): 4605 − 4620. doi: 10.5194/acp-8-4605-2008 [31] 袁青, 吴俊华, 朱志良, 等. 五类企业有机溶剂使用情况分析[J]. 中华劳动卫生职业病杂志, 2010, 28(5): 350 − 352. [32] LI G H, WEI W, SHAO X, et al. A comprehensive classification method for VOC emission sources to tackle air pollution based on VOC species reactivity and emission amounts[J]. Journal of Environmental Sciences, 2018, 67(5): 78 − 88. [33] 曹梦瑶, 林煜棋, 章炎麟. 南京工业区秋季大气挥发性有机物污染特征及来源解析[J]. 环境科学, 2020, 41(6): 2565 − 2576. [34] GUO H, WANG T, LOUIE P K K. Source apportionment of ambient non methane hydrocarbons in Hong Kong: application of a principal component analysis(PCA)/absolute principal component scores (PCA/APCS)receptor model[J]. Environmental Pollution, 2004, 129(3): 489 − 498. doi: 10.1016/j.envpol.2003.11.006 [35] WANG T, GUO H, KAM W C, et al. 2010. Review on the effectiveness of VOC control programme in Hong Kong[R]. AP 07-014Project. Hong kong Environmental Protection Department. [36] HODGSON A T, Levin H. Classification of measured indoor volatile organic compounds based on noncancer health and comfort Consideration[J]. Landolt Brnstein GroupⅡ Molecules and Radicals, 2003, 210(7): 529 − 529. [37] ATKINSON R. Atmospheric chemistry of VOCs and NOx[J]. Atmospheric Environment, 2000, 34(12-14): 2063 − 2101. doi: 10.1016/S1352-2310(99)00460-4 [38] 王俊秀, 安俊琳, 邵平, 等. 南京北郊大气臭氧周末效应特征分析[J]. 环境科学, 2017, 38(6): 2256 − 2263.