乌鲁木齐市城市污泥保水特性的研究

杨涵博, 李轩男, 罗艳丽. 乌鲁木齐市城市污泥保水特性的研究[J]. 环境保护科学, 2020, 46(4): 92-96. doi: 10.16803/j.cnki.issn.1004-6216.2020.04.016
引用本文: 杨涵博, 李轩男, 罗艳丽. 乌鲁木齐市城市污泥保水特性的研究[J]. 环境保护科学, 2020, 46(4): 92-96. doi: 10.16803/j.cnki.issn.1004-6216.2020.04.016
YANG Hanbo, LI Xuannan, LUO Yanli. Research on Water Retention Characteristic of Urban Sludge in Urumqi[J]. Environmental Protection Science, 2020, 46(4): 92-96. doi: 10.16803/j.cnki.issn.1004-6216.2020.04.016
Citation: YANG Hanbo, LI Xuannan, LUO Yanli. Research on Water Retention Characteristic of Urban Sludge in Urumqi[J]. Environmental Protection Science, 2020, 46(4): 92-96. doi: 10.16803/j.cnki.issn.1004-6216.2020.04.016

乌鲁木齐市城市污泥保水特性的研究

    作者简介: 杨涵博(1995 − ),女,硕士研究生。研究方向:农业废弃物循环利用。E-mail:wxhxhr520@163.com
    通讯作者: 罗艳丽(1977 − ),女,副教授、硕士生导师。研究方向:环境污染治理、荒漠化防治。E-mail:luoyanlimail@sina.com
  • 基金项目:
    新疆维吾尔族自治区区域协同创新专项(科技援疆计划)(2017E0237)资助
  • 中图分类号: X703

Research on Water Retention Characteristic of Urban Sludge in Urumqi

    Corresponding author: LUO Yanli, luoyanlimail@sina.com
  • 摘要: 本研究测定了城市污泥的吸水倍数、吸水速率和保水率等保水指标,研究了污泥不同添加量对土壤保水性的影响,并采用红外光谱仪观察干污泥和保水污泥的结构,从微观上解析污泥的保水特征。结果表明:150 μm污泥的吸水倍数为4.98 g/g,约为2 mm土壤的7.1倍;1 min时150 μm的污泥吸水速率为5.09 g/min;150 μm污泥可保水14 d;污泥的粒径越小,吸水倍数越大,吸水速率越高,保水率越高;在土壤中添加25%的污泥后,土壤的吸水量比纯土壤提高了49.77%。污泥吸水主要为物理吸附,作为一种良好的保水剂,添加于土壤中有利于水分的保持,粒径越小,保水效果越好。
  • 加载中
  • 图 1  污泥处理流程图

    图 2  不同粒径污泥的吸水速率

    图 3  不同粒径污泥的保水率

    图 4  不同浓度污泥对土壤吸水量的影响

    图 5  吸水污泥和未吸水污泥的红外光谱图

    表 1  土壤污泥基本理化性质

    类型有机质
    /g·kg−1
    pHTP
    /g·kg−1
    碱解氮
    /mg·kg−1
    TN
    /g·kg−1
    速效磷
    /mg·kg−1
    污泥467.057.832.2555.1817.99280
    土壤 64.498.633.25 7.58 0.19 4.23
    类型有机质
    /g·kg−1
    pHTP
    /g·kg−1
    碱解氮
    /mg·kg−1
    TN
    /g·kg−1
    速效磷
    /mg·kg−1
    污泥467.057.832.2555.1817.99280
    土壤 64.498.633.25 7.58 0.19 4.23
    下载: 导出CSV

    表 2  不同粒径下污泥和保水剂的吸水倍数

    类型干质量/g吸水量/g吸水倍数/g·g−1
    2 mm土壤0.500.350.70a
    2 mm污泥0.501.262.52b
    1 mm污泥0.501.372.74b
    250 μm污泥0.501.503.00c
    150 μm污泥0.502.494.98d
      注:不同字母间表示有显著性差异(p<0.05)。
    类型干质量/g吸水量/g吸水倍数/g·g−1
    2 mm土壤0.500.350.70a
    2 mm污泥0.501.262.52b
    1 mm污泥0.501.372.74b
    250 μm污泥0.501.503.00c
    150 μm污泥0.502.494.98d
      注:不同字母间表示有显著性差异(p<0.05)。
    下载: 导出CSV
  • [1] 黄占斌, 张玲春, 董莉, 等. 不同类型保水剂性能及其对玉米生长效应的比较[J]. 水土保持学报, 2007, 21(1): 140 − 143. doi: 10.3321/j.issn:1009-2242.2007.01.034
    [2] 党秀丽, 张玉龙, 黄毅. 保水剂在农业上的应用与研究进展[J]. 土壤通报, 2006, 37(2): 352 − 355. doi: 10.3321/j.issn:0564-3945.2006.02.033
    [3] MIKKELSEN R L, BEHEL A D, WILLIAMS H M. Addition of gel-forming hydrophilic polymers to nitrogen fertilizer[J]. Fertilize Research, 1993, 36(1): 55 − 61. doi: 10.1007/BF00749948
    [4] ABRAHAM J, PILLAI V N R. Membrane-encapsulated controlled-release urea fertilizers based on acrylamide copolymers[J]. Journal of Applied Polymer Science, 1996, 60(13): 2347 − 2351. doi: 10.1002/(SICI)1097-4628(19960627)60:13<2347::AID-APP6>3.0.CO;2-E
    [5] 何绪生, 何养生, 邹绍文. 保水剂作为肥料养分缓释载体的应用[J]. 中国土壤与肥料, 2008(4): 5 − 9. doi: 10.3969/j.issn.1673-6257.2008.04.002
    [6] 尹军, 谭学军, 廖国盘, 等. 我国城市污水污泥的特性与处置现状[J]. 中国给水排水, 2003, 19(13): 21 − 24.
    [7] 乔显亮, 骆永明, 吴胜春. 污泥的土地利用及其环境影响[J]. 土壤, 2000(2): 79 − 85. doi: 10.3321/j.issn:0253-9829.2000.02.006
    [8] 陈晓蓉, 孙克君, 王俊, 等. 污泥保水功能的研究及应用初报[J]. 水土保持通报, 2011, 31(5): 200 − 203.
    [9] 曹秀芹, 谭晶晶. 污泥农用中的资源利用价值分析[J]. 环境工程, 2008, 26(3): 84 − 87.
    [10] 罗艳丽, 霍达. 城市污泥对不同质地土壤保水效果研究[J]. 环境保护科学, 2015, 41(1): 80 − 84. doi: 10.3969/j.issn.1004-6216.2015.01.017
    [11] 刘美英, 高永, 汪季, 等. 污泥堆肥对矿区复垦土壤栽培基质保水能力的影响[J]. 水土保持通报, 2009, 29(5): 102 − 104.
    [12] 国家环境保护总局, 国家质量监督检验检疫总局. 城镇污水处理厂污染物排放标准: GB 18918-2002[S/OL].(2003-07-01)http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/shjbh/swrwpfbz/200307/W020061027518964575034.pdf.
    [13] 田巍, 李天一, 白福臣, 等. 保水剂研究进展及应用[J]. 化工新型材料, 2009, 37(2): 11 − 14. doi: 10.3969/j.issn.1006-3536.2009.02.004
    [14] 白文波, 宋吉青, 李茂松. 4种保水剂吸持水特性的比较研究[J]. 干旱地区农业研究, 2008, 26(5): 100 − 104.
    [15] 刘宇光. 高分子复合吸水性材料的辐射合成及性能测定[J]. 哈尔滨商业大学学报( 自然科学版), 2004, 20(3): 329 − 233.
    [16] 黄占斌, 张国桢, 李秧秧, 等. 保水剂特性测定及其在农业中的应用[J]. 农业工程学报, 2002(1): 22 − 26. doi: 10.3321/j.issn:1002-6819.2002.01.006
    [17] 张建刚, 汪勇, 汪有科, 等. 10种保水剂基本特性对比研究[J]. 干旱地区农业研究, 2009, 27(2): 208 − 212.
    [18] 汪亚峰, 李茂松, 卢玉东, 等. 20种保水剂吸水特性研究[J]. 中国农学通报, 2005, 21(1): 167 − 170. doi: 10.3969/j.issn.1000-6850.2005.01.049
    [19] 王文全, 赵秀玲, 罗艳丽, 等. 牛粪发酵过程中的红外光谱分析[J]. 中国牛业科学, 2011, 37(2): 15 − 19. doi: 10.3969/j.issn.1001-9111.2011.02.004
    [20] 刘亚琦, 黄占斌, 林杉, 等. 10种农用保水剂基本性能的比较研究[J]. 干旱地区农业研究, 2011, 29(6): 147 − 151.
    [21] 李杨, 王百田. 肥料对不同粒径保水剂吸水性能的影响[J]. 北方园艺, 2015(3): 143 − 146.
    [22] 李兴, 蒋进, 宋春武, 等. 不同粒径保水剂吸水特性及其对土壤物理性能的影响[J]. 干旱区研究, 2012, 29(4): 609 − 614.
  • 加载中
图( 5) 表( 2)
计量
  • 文章访问数:  1843
  • HTML全文浏览数:  1843
  • PDF下载数:  3
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-09-23
  • 刊出日期:  2020-08-20

乌鲁木齐市城市污泥保水特性的研究

    通讯作者: 罗艳丽(1977 − ),女,副教授、硕士生导师。研究方向:环境污染治理、荒漠化防治。E-mail:luoyanlimail@sina.com
    作者简介: 杨涵博(1995 − ),女,硕士研究生。研究方向:农业废弃物循环利用。E-mail:wxhxhr520@163.com
  • 1. 新疆农业大学草业与环境科学学院,新疆 乌鲁木齐 830000
  • 2. 东北林业大学林学院,黑龙江 哈尔滨 150040
基金项目:
新疆维吾尔族自治区区域协同创新专项(科技援疆计划)(2017E0237)资助

摘要: 本研究测定了城市污泥的吸水倍数、吸水速率和保水率等保水指标,研究了污泥不同添加量对土壤保水性的影响,并采用红外光谱仪观察干污泥和保水污泥的结构,从微观上解析污泥的保水特征。结果表明:150 μm污泥的吸水倍数为4.98 g/g,约为2 mm土壤的7.1倍;1 min时150 μm的污泥吸水速率为5.09 g/min;150 μm污泥可保水14 d;污泥的粒径越小,吸水倍数越大,吸水速率越高,保水率越高;在土壤中添加25%的污泥后,土壤的吸水量比纯土壤提高了49.77%。污泥吸水主要为物理吸附,作为一种良好的保水剂,添加于土壤中有利于水分的保持,粒径越小,保水效果越好。

English Abstract

  • 随着经济社会的发展,水资源短缺问题已成为我国农业和经济社会发展的制约因素[1]。因此,实施节水技术对实现我国水资源可持续利用,保障我国经济社会可持续发展具有十分重大的意义。而保水剂因为使用方便,保水效果好等优点也成为节水增产的新途径和新方法[2]。从20世纪60年代开始,保水剂在美国、日本等发达国家开始研究[3-4],但因成本高,成为制约其发展利用的重要因素[5]

    污泥是污水厂的副产品,随着工业和城市的发展,污水处理率的提高,我国污泥的产生量正随着污水处理率的提高而迅速增加[6]。妥善科学地处理处置大量产生的污泥已是一个亟待解决的环境问题[7]。同时污泥也是一种很有利用价值的潜在资源,但污泥的透水性差难以干燥是其资源化利用的技术障碍[8-9]。利用其这个特点如果可以开发污泥保水的新功能,在促进污泥废物利用的同时,也可为复合保水剂提供一种新的廉价材料。罗艳丽[10]研究发现,污泥具有保水功能,污泥用量和在土层中放置的位置对保水效果有重要的影响。刘美英等[11]通过盆栽试验也表明,城市污泥堆肥不仅可以明显提高栽培基质的有效氮、磷含量,提供植物生长所需的养分,而且可以增强栽培基质的保水性能和植物的抗旱能力。污泥保水功能的开发利用,对污泥的农用资源化及保水新材料的研制均有重要意义[8]。目前的研究表明污泥具有一定的保水性,但有关污泥保水特性的研究还较少,城市污泥的保水性能究竟如何还不清楚。文章以农田土壤为对照,通过测定不同粒径下污泥的吸水倍数、吸水速率、保水率等指标,研究城市污泥的保水性能,分析了污泥不同添加量对土壤保水性的影响,并采用红外光谱仪观察干污泥和保水污泥的结构,从微观上解析污泥的保水特征,以期为今后污泥资源化新途径和保水剂的开发提供理论依据。

  • 供试污泥采自乌鲁木齐市某城市污水处理厂,该污水处理厂主要处理乌鲁木齐市的生活污水,水处理采用AB法处理工艺,出水满足《城镇污水处理厂污染物排放标准(GB 18918—2002)》[12]中二级排放标准。该污水厂污泥处理采用常规处理流程,见图1。供试污泥为该污水厂脱水后的污泥。

    供试土壤采自新疆农业大学三坪农场,为农田土壤。土壤、污泥样品基本理化性质见表1

  • 将采集的污泥和土壤样品放在干净的白纸上经自然风干后,用四分法分别缩至100 g,除去样品中的石子和植物残体等异物,用研钵研碎,土壤样品过2 mm的尼龙筛,污泥样品分别过2 mm、1 mm、250 μm和150 μm尼龙筛,装袋做好标记备用。污泥的初始含水率为71%,风干后为1.5%。

  • 吸水倍数是指保水剂所吸收水分质量与自身质量的比值,反映保水剂能够吸收水分的最大量,是保水剂保水性能的一个重要指标[13]。吸水倍数越大,能够保持的水分越多,可给予农作物更多的水分吸收。

    以过2 mm筛的土壤为对照,称取过不同孔径的污泥0.50 g,放入玻璃烧杯中,加入100 mL水,放置60 min,充分饱和后用104 μm纱网过滤,直至每20 s无一滴水滴下时称量,每种处理设置3个重复。吸水倍数的计算见公式(1)[14]

    式(1)中,Q为吸水倍数;m1m2为干、吸水饱和后的质量。

  • 吸水速率为单位质量的保水剂在单位时间内吸收的液体体积或质量,是衡量保水剂能否快速吸水的一个重要指标[15]

    称取过不同孔径的污泥1.00 g,加入100 mL蒸馏水,分别于1、3、5、10、20、30、60、90 min后过滤污泥,称量,测定吸水速率。吸水速率的计算见公式(2)[16]

    式(2)中,V为吸水速率;f为吸水量;s为时间。

  • 保水能力是反映污泥充分吸水后的供水能力,保水能力的大小用保水率来衡量[17]。保水率是保水量与含水量的比值,能够说明各处理的保水能力。

    以蒸馏水为对照,称取过不同孔径的吸水饱和后的污泥50.00 g,于烧杯中,在室温条件下蒸发,每天称量,直至污泥中的水分完全蒸发。污泥失水率的计算见公式(3)[18]

    式(3)中,T为失水率;D为失水量;H为饱和含水量;B为保水率。

  • 以不添加污泥的土壤(A1)为对照,称取一定量过1 mm孔径的污泥加入土壤中,污泥添加量分别为土壤质量的25%(A2)、50%(A3)、75%(A4)和100%(A5)。添加污泥后混匀,装入底部扎孔的一次性塑料杯中;在蒸馏水中吸水2 h,测定吸水量,每个处理设置3个重复。

  • 将污泥样品放在烘箱中烘干,磨为粉末,用溴化钾压片法制备红外扫描样品,然后用傅里叶红外光谱仪在4 000~400 cm-1范围扫描记录红外透光率光谱图。取3 g左右的污泥,放入充足的蒸馏水中浸泡1 d后,用74 μm的尼龙布过滤,并用蒸馏水淋洗,浸泡过滤淋洗3次,然后收集过滤物,在烘箱中烘干,然后用同样的方法扫描红外光谱。

  • 实验数据采用MicrosoftExcel 2010处理分析,显著性分析用软件SPSS19.0处理分析,红外光谱图用软件Origin8.6处理分析。

  • 不同粒径污泥的吸水倍数见表2

    表2可知,相同条件下充分吸水后,污泥的吸水倍数远高于土壤,两者之间呈显著性差异(p<0.05)。1 g的2 mm土壤可以吸收0.35 g的水,而1 g的2 mm污泥可以吸收1.26 g的水,相同粒径下污泥的吸水倍数为土壤的3.6倍,1 g的150 μm污泥可以吸收2.49 g的水,为2 mm土壤吸水倍数为的7.1倍左右。粒径对污泥的吸水量有一定的影响,4种粒径下,污泥的吸水倍数表现:150 μm污泥>250 μm污泥>1 mm污泥>2 mm污泥,粒径越小,污泥吸水倍数越大。除2 mm和1 mm污泥的吸水倍数之间没有呈现显著性差异外,其他粒径间均存在显著性差异(p<0.05)。

  • 不同粒径污泥的吸水速率见图2

    污泥和水刚接触的1 min内,吸水速率在各粒径下均最大,污泥能快速的吸收水分。150 μm的污泥1 min时,吸水速率为5.09 g/min,2 mm的污泥吸水速率为 2.25 g/min。之后污泥吸收水分的速度大幅下降,10 min时,150 μm的污泥吸水速率降为0.33 g/min,2 mm的污泥吸水速率降为 0.25 g/min。10 min之后,各粒径下污泥吸水速率均较低,不再发生较大变化,60 min左右污泥吸水达到饱和,吸水速率不再变化。表明污泥和水接触后,在3 min内能快速吸收水分,粒径越小,吸水速率越大,5 min之后吸水速率逐渐减小,60 min左右污泥吸水达到饱和。

  • 不同粒径污泥的保水率变化见图3

    图3可见,污泥的保水率:150 μm污泥>250 μm污泥>1 mm污泥>2 mm污泥>蒸馏水。蒸馏水在第6 d左右全部蒸发,除蒸馏水以外,2 mm污泥的保水时间最短,10 d左右污泥中的水分全部蒸发;150 μm污泥保水时间最长,14 d左右水分全部蒸发;250 μm污泥和1 mm污泥保水率没有呈现显著性差异(P<0.05),水分均为12 d左右全部蒸发。表明粒径对污泥的保水率有影响,粒径越小,保水率越高,保水效果越好。

  • 添加不同污泥量的土壤吸水量见图4

    图4可见,不同处理下的土壤吸水量表现:A5>A4>A3>A2>A1。各处理在P<0.05水平下呈现显著性差异,表明添加污泥后可以增大土壤的吸水量,并且污泥添加量越多,土壤中的吸水量越大。纯土壤样品A1的吸水量最小,为21.6 g;纯污泥A5的吸水量最大,为52.97 g。在土壤中添加25%的污泥后,土壤的吸水量增加到32.35 g,比对照提高了49.77%;在土壤中添加50%的污泥后,土壤的吸水量增加到42.9 g,比对照提高了98.61%;在土壤中添加75%的污泥后,土壤的吸水量增加到47.18 g,比对照提高了118.43%。

  • 吸水污泥和未吸水污泥的红外光谱见图5

    图5可见,污泥在3 429、2 933、2 855、2 359、2 334、1 637、1 380以及1 031 cm-1下有吸收峰。

    吸水的污泥和未吸水的污泥的红外光谱对照红外光谱吸收峰的归属表[19]可知,污泥中主要含有芳香族、CH2烷烃、二氧化碳等物质。吸水的污泥和未吸水的污泥的红外光谱图中的特征峰波长一致,两者中的官能团并没有发生变化,由此可以得出,污泥吸水前后没有发生明显的化学变化,污泥吸水主要为物理吸附。

  • 本研究表明,城市污泥具有一定的保水性,吸水倍数远高于土壤,但相比市面上一般吸水倍数为几十甚至几百的保水剂[20],污泥的保水性能不及常规保水剂。但污泥作为急需处理的固体废物,价廉易得,可以通过增加其用量来进一步提高保水效果。开发污泥保水新功能,在促进污泥废物利用的同时,也为复合保水剂提供一种新的廉价材料。目前,保水剂因为其成本高[21],尚未被广泛使用,污泥若与保水剂结合制成复合保水剂使用,既降低了保水剂的价钱,又利用了污泥的保水性能,有望为污泥和保水剂的利用提供更大的发展空间。

    通过对4种不同粒径污泥保水特性的研究,发现无论在吸水倍数、吸水速率还是在保水率方面,粒径为150 μm的污泥均最强,说明在一定程度上污泥粒径越小,它的保水特性就更优,而且较土壤自身的保水性能有明显的提高,这是因为小粒径具有比大粒径更大的表面积,具有更强的吸附能力,李杨[21]和李兴[22]在研究不同粒径保水剂的性能时也证实了这一点,保水剂粒径越小,吸水倍率越大。在实际生产中,合适粒径的污泥若经过适当的处理后施入土壤,将有助于土壤快速吸收水分,增加土壤吸水量,提高土壤的保水率。

    开发污泥的保水功能,在环境保护与经济发展上均有明显的优势。污泥是一种急待处理的废物,在大中城市尤为明显。而大多数城市污泥由于与工业排污分开,基本上没有重金属或有机污染物超标的问题。作为保水材料使用,其用量比肥料用量更少,因而安全性更强[8]。污泥保水性的开发利用是切实可行的。

  • 1)污泥的吸水倍数高于土壤,2 mm污泥的吸水倍数为2.52 g/g,约为2 mm土壤的吸水倍数的3.6倍。150 μm污泥的吸水倍数为4.98 g/g,约为土壤的7.1倍。污泥粒径越小,吸水倍数越大。

    2)污泥和水接触后,在3 min内能快速吸收水分,粒径越小,吸水速率越大,5 min之后吸水速率逐渐减小,60 min左右污泥吸水达到饱和。

    3)污泥的保水率:150 μm污泥>250 μm污泥>1 mm污泥>2 mm污泥>蒸馏水。粒径越小,保水率越高,保水效果越好。

    4)添加污泥后可以增大土壤的吸水量,在土壤中添加25%的污泥后,土壤的吸水量可以增加49.77%。

    5)污泥吸水前后没有发生明显的化学变化,主要为物理吸附。

参考文献 (22)

目录

/

返回文章
返回