-
赤泥是铝土矿提取氧化铝过程中产生的一种盐碱化副产物[1]。全球每年产生赤泥 (1.2~1.5)×108 t,截至2020年,全球赤泥库存已达40×108 t[2]。尽管目前已有不少关于赤泥综合利用的尝试,如有价金属回收、开发建筑材料、环境修复等,但全球的赤泥利用率仍不足10%[3],这将导致大量的赤泥只能通过筑坝堆存[4]。由于赤泥具有高盐碱性、腐蚀性、浸出毒性等不良特性,其在堆存过程中易对周边水体、土壤、植被等造成严重破坏[5]。例如,赤泥中的碱性物质迁移至水体和土壤环境会对水生动物和植物产生毒性,从而抑制其正常生长甚至导致其死亡[6-7]。我国是全球最大的氧化铝生产和消费国[8],氧化铝生产过程中产生的大量赤泥堆存造成的环境安全问题已严重制约氧化铝工业的可持续发展[9]。因此,消除赤泥的潜在环境风险刻不容缓。
近年来,植被恢复已成为消除赤泥潜在环境风险的有效途径[10]。由于赤泥具有碱性强、养分贫瘠、物理结构差等极端立地特征,致使在赤泥堆场上成功开展植被恢复较为困难[11]。采取基质改良措施将赤泥转化为类土基质是决定赤泥堆场能否成功开展植被恢复的关键[12]。其中,团聚体是指示赤泥土壤化的重要指标,其作为最基本的土壤系统单元活跃地参与地球表层生态系统过程[13-14]。团聚体对土壤的物理、化学和生物过程起着关键的调控作用。目前,关于不同类型有机-无机改良剂对赤泥理化性质、微生物特性、团聚体结构与稳定性影响的研究已有较多报道[15-17]。
研究表明,由于不同粒径团聚体颗粒与有机物和矿物质的结合方式不同[18],致使不同粒径团聚体中酶活性、微生物群落分布存在空间分异性[19],进而影响团聚体中养分的分布及其生物有效性。赤泥团聚体结构及其有机碳分布受风化过程和植被的影响[20],但关于改良剂与植被联合修复对赤泥团聚体中养分、酶活性、微生物空间分异特征影响的研究鲜有报道,这将制约对赤泥土壤化过程中养分生物地球化学过程以及能否在赤泥上成功建立稳定植被群落的认识。本研究拟通过开展盆栽修复实验,探究改良剂与植被联合修复下赤泥团聚体中养分、酶活性、微生物群落的空间分异特征及其彼此间的关系,旨在为深入理解改良剂与植被联合修复下赤泥土壤化过程中养分迁移转化特征及其潜在影响机理提供参考。
改良剂与植被联合修复对赤泥团聚体养分和微生物特性的影响
The synergistic remediation effects of amendment and vegetation on nutrient and microbial property in bauxite residue aggregates
-
摘要: 改良剂与植被联合修复是促进赤泥土壤化的关键,但其对赤泥团聚体中养分和微生物特性的影响尚不清晰。通过开展盆栽修复实验探究改良剂 (磷石膏、木醋液、鱼粪、菌渣) 与黑麦草联合修复对赤泥团聚体中养分、酶活性、微生物群落空间分异特征的影响。结果表明,在改良剂与植被联合修复赤泥后,大团聚体 (>0.25 mm) 和微团聚体 (<0.25 mm) 占比分别减少和增加。团聚体中有机质、养分质量分数、酶活性及微生物群落Alpha多样性指数显著增加 (P<0.05) ,且主要分布于<1 mm团聚体。此外,团聚体养分、酶活性、微生物群落间呈显著正相关 (P<0.05) 。本研究结果可为深入了解赤泥土壤化过程中养分迁移转化机理及修复植物的养分自维持机制提供参考。Abstract: The synergistic remediation of amendment and vegetation is the key to promote soil formation of bauxite residue; however, their effects on the nutrient and microbial properties of bauxite residue aggregates are still unclear. The synergistic remediation of amendments (phosphogypsum, wood vinegar, fish manure, and mushroom residue) and perennial ryegrass (Lolium perenne L.) on the spatial differentiation characteristics of nutrient, enzyme activity, and microbial community in the bauxite residue aggregates were investigated by conducting a pot experiment. The results showed that the proportion of macroaggregates (>0.25 mm) and microaggregates (<0.25 mm) reduced and increased in the amended and revegetated bauxite residue, respectively. The organic matter, nutrient, enzyme activity, and the alpha diversity indices of microbial community in the bauxite residue aggregates increased significantly (P<0.05) under the synergistic remediation of amendment and vegetation, which were mainly distributed in the aggregates with size of <1 mm. In addition, there was a significant positive correlation among the nutrient, enzyme activity, and microbial community in the bauxite residue aggregates (P<0.05). These results can provide a reference for in-depth understanding of the mechanisms of the migration and transformation of nutrient during soil formation of bauxite residue and the nutrient self-sustaining in plants.
-
表 1 赤泥与改良剂的理化性质
Table 1. Physicochemical properties of bauxite residue and amendments
供试材料 pH EC/(mS·cm−1) 全氮/(g·kg−1) 全磷/(g·kg−1) 有机质/(g·kg−1) 有效氮/(mg·kg−1) 有效磷/(mg·kg−1) 速效钾/(mg·kg−1) 赤泥 10.86 1.00 0.14 2.30 7.81 1.59 3.98 595 磷石膏 5.24 2.44 0.14 3.80 2.90 7.72 57.25 85.20 鱼粪 6.48 3.23 1.40 56.13 61.20 275.58 212.08 880.00 菌渣 4.66 5.48 1.40 3.80 55.30 310.99 648.15 6 206.00 表 2 赤泥团聚体细菌群落多样性和丰富度指数
Table 2. The diversity and richness indices of bacterial community in the aggregates of bauxite residue
处理组 粒径/mm 群落多样性 群落丰富度 Coverage Shannon Simpson Ace Chao1 R 1~2 0 0 0 0 0 0.5~1 0 0 0 0 0 0.25~0.5 0 0 0 0 0 <0.25 0 0 0 0 0 RA1 1~2 5.16±0.02Aa 0.017±0.001Ab 1192.54±2.26Ab 1185.54±3.35Aa 0.992 0.5~1 5.19±0.02Aa 0.017±0.001Bb 1270.14±4.60Aa 1285.13±3.92Aa 0.991 0.25~0.5 5.16±0.01Aa 0.018±0.000Ab 1258.79±1.63Ba 1255.87±5.54Ca 0.992 <0.25 5.15±0.02Aa 0.024±0.001Aa 1260.69±26.90Aa 1259.93±53.69Aa 0.992 RA2 1~2 5.15±0.03Aa 0.015±0.001Ab 1220.11±20.39Aa 1233.18±24.87Aa 0.992 0.5~1 5.07±0.03BCab 0.020±0.000ABb 1236.33±20.71Aa 1260.89±13.52Aa 0.992 0.25~0.5 5.17±0.04Aa 0.021±0.001Ab 1262.56±1.99Ba 1256.87±1.83Ca 0.992 <0.25 5.00±0.03Bb 0.038±0.004Aa 1254.81±6.80Aa 1278.07±10.05Aa 0.992 RA3 1~2 5.14±0.03Aab 0.017±0.000Ab 1229.62±13.07Ac 1271.45±50.85Aa 0.991 0.5~1 5.00±0.00Cb 0.025±0.003Aab 1247.35±33.04Abc 1300.47±41.87Aa 0.991 0.25~0.5 5.22±0.06Aa 0.020±0.002Aab 1339.93±12.02Aa 1375.23±12.93Aa 0.991 <0.25 5.05±0.06ABab 0.032±0.005Aa 1325.78±26.14Aab 1341.55±35.15Aa 0.991 RA4 1~2 5.17±0.03Aa 0.017±0.002Ab 1239.05±26.15Aa 1250.61±32.81Aa 0.992 0.5~1 5.14±0.04ABab 0.019±0.001ABb 1284.65±39.02Aa 1307.56±64.90Aa 0.991 0.25~0.5 5.22±0.02Aa 0.020±0.001Ab 1286.19±9.32Ba 1285.89±2.21Ba 0.992 <0.25 5.01±0.03ABb 0.034±0.004Aa 1308.35±44.03Aa 1326.79±53.21Aa 0.991 注:不同小写字母和大写字母分别表示相同处理组中不同粒径赤泥团聚体细菌Alpha多样性指数和不同处理组间同一粒径赤泥团聚体细菌Alpha多样性指数存在显著差异 (P<0.05) 。 表 3 赤泥团聚体真菌群落多样性和丰富度指数
Table 3. The diversity and richness indices of fungal community in the aggregates of bauxite residue
处理组 粒径/mm 群落多样性 群落丰富度 Coverage Shannon Simpson Ace Chao1 R 1~2 0 0 0 0 0 0.5~1 0 0 0 0 0 0.25~0.5 0 0 0 0 0 <0.25 0 0 0 0 0 RA1 1~2 2.11±0.06Aa 0.20±0.02Aa 179.01±2.79Ba 184.35±4.80Ba 0.999 0.5~1 2.06±0.05Aa 0.23±0.01Ba 247.06±52.57Aa 237.08±35.68Aa 0.999 0.25~0.5 2.12±0.05Aa 0.21±0.02Aa 232.57±9.56ABa 212.03±16.97Aa 0.999 <0.25 1.98±0.03Aa 0.25±0.02Aa 250.64±2.35Aa 217.48±1.11Aa 0.999 RA2 1~2 2.23±0.15Aa 0.18±0.02Ab 219.28±15.60ABab 203.26±2.21Aa 0.999 0.5~1 2.05±0.09Aa 0.22±0.02Bab 179.40±8.00Ab 192.76±1.18Aa 0.999 0.25~0.5 1.95±0.03Ba 0.26±0.01Aa 251.39±3.11ABa 204.42±12.63Aa 0.999 <0.25 2.05±0.02Aa 0.23±0.00Aab 243.66±14.33Aa 201.47±3.66Aa 0.999 RA3 1~2 2.18±0.00Aa 0.17±0.01Ab 176.66±3.89Ba 176.70±6.70Ba 0.999 0.5~1 2.03±0.06Ab 0.23±0.01Ba 195.19±6.53Aa 199.20±5.96Aa 0.999 0.25~0.5 2.03±0.02ABb 0.24±0.01Aa 224.36±4.95Ba 218.23±1.83Aa 0.999 <0.25 2.00±0.01Ab 0.23±0.01Aa 202.44±29.16Aa 182.06±20.50Aa 0.999 RA4 1~2 2.03±0.17Aa 0.23±0.05Aa 234.14±19.16Aa 215.42±2.51Aa 0.999 0.5~1 1.86±0.03Aa 0.30±0.01Aa 208.98±19.10Aa 199.33±1.93Aa 0.999 0.25~0.5 1.97±0.03ABa 0.26±0.01Aa 278.17±24.44Aa 222.45±10.86Aa 0.999 <0.25 1.95±0.06Aa 0.28±0.03Aa 233.05±17.11Aa 214.49±16.01Aa 0.999 注:不同小写字母和大写字母分别表示相同处理组中不同粒径赤泥团聚体真菌Alpha多样性指数和不同处理组间同一粒径赤泥团聚体真菌Alpha多样性指数存在显著差异 (P<0.05) 。 -
[1] XUE S G, ZHU F, KONG X F, et al. A review of the characterization and revegetation of bauxite residues (red mud)[J]. Environmental Science and Pollution Research, 2016, 23(2): 1120-1132. doi: 10.1007/s11356-015-4558-8 [2] SWAIN B, AKCIL A, LEE J C. Red mud valorization an industrial waste circular economy challenge; review over processes and their chemistry[J]. Critical Reviews in Environmental Science and Technology, 2022, 52(4): 520-570. doi: 10.1080/10643389.2020.1829898 [3] 薛生国, 李晓飞, 孔祥峰, 等. 赤泥碱性调控研究进展[J]. 环境科学学报, 2017, 37(8): 2815-2828. [4] BRAY A W, STEWART D I, COURTNEY R, et al. Sustained bauxite residue rehabilitation with gypsum and organic matter 16 years after initial treatment[J]. Environmental Science & Technology, 2018, 52(1): 152-161. [5] REN J, YANG B, CHEN J, et al. Alkalinity neutralization of bauxite residue by nitrohumic acid: mineral transformation and subsequent formation of organo-mineral complexes[J]. Applied Geochemistry, 2022, 136: 105153. doi: 10.1016/j.apgeochem.2021.105153 [6] SAHA N, KHARBULI Z Y, BHATTACHARJEE A, et al. Effect of alkalinity (pH 10) on ureogenesis in the air-breathing walking catfish, Clarias batrachus[J]. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology, 2002, 132(2): 353-364. [7] 管博, 于君宝, 陆兆华, 等. 黄河三角洲滨海湿地水盐胁迫对盐地碱蓬幼苗生长和抗氧化酶活性的影响[J]. 环境科学, 2011, 32(8): 2422-2429. [8] XUE S G, LI M, JIANG J, et al. Phosphogypsum stabilization of bauxite residue: conversion of its alkaline characteristics[J]. Journal of Environmental Sciences, 2019, 77: 1-10. doi: 10.1016/j.jes.2018.05.016 [9] 黄玲, 李义伟, 薛生国, 等. 氧化铝赤泥堆场盐分组成变化[J]. 中国有色金属学报, 2016, 26(11): 2433-2439. [10] WU H, TANG T, ZHU F, et al. Long term natural restoration creates soil‐like microbial communities in bauxite residue: a 50-year filed study[J]. Land Degradation & Development, 2021, 32(4): 1606-1617. [11] ZHU F, XUE S G, HARTLEY W, et al. Novel predictors of soil genesis following natural weathering processes of bauxite residues[J]. Environmental Science and Pollution Research, 2016, 23(3): 2856-2863. doi: 10.1007/s11356-015-5537-9 [12] ZHU F, HOU J T, XUE S G, et al. Vermicompost and gypsum amendments improve aggregate formation in bauxite residue[J]. Land Degradation & Development, 2017, 28(7): 2109-2120. [13] RILLIG M C, MULLER L A, LEHMANN A. Soil aggregates as massively concurrent evolutionary incubators[J]. The ISME Journal, 2017, 11(9): 1943-1948. doi: 10.1038/ismej.2017.56 [14] 刘亚龙, 王萍, 汪景宽. 土壤团聚体的形成和稳定机制: 研究进展与展望[J]. 土壤学报, 2022: 1-18. [15] XUE S G, YE Y Z, ZHU F, et al. Changes in distribution and microstructure of bauxite residue aggregates following amendments addition[J]. Journal of Environmental Sciences, 2019, 78: 276-286. doi: 10.1016/j.jes.2018.10.010 [16] TIAN T, LIU Z, ZHU F, et al. Improvement of aggregate‐associated organic carbon and its stability in bauxite residue by substrate amendment addition[J]. Land Degradation & Development, 2020, 31(16): 2405-2416. [17] DONG M Y, HU S X, LV S Q, et al. Recovery of microbial community in strongly alkaline bauxite residues after amending biomass residue[J]. Ecotoxicology and Environmental Safety, 2022, 232: 113281. doi: 10.1016/j.ecoenv.2022.113281 [18] TISDALL M, OADES J M. Organic matter and water-stable aggregates in soils[J]. Journal of Soil Science, 1982, 33(2): 141-163. doi: 10.1111/j.1365-2389.1982.tb01755.x [19] LIAO H, ZHANG Y C, ZUO Q Y, et al. Contrasting responses of bacterial and fungal communities to aggregate-size fractions and long-term fertilizations in soils of northeastern China[J]. Science of the Total Environment, 2018, 635: 784-792. doi: 10.1016/j.scitotenv.2018.04.168 [20] 朱锋, 李萌, 薛生国, 等. 自然风化过程对赤泥团聚体有机碳组分的影响[J]. 生态学报, 2017, 37(4): 1174-1183. [21] 祁迎春, 王益权, 刘军, 等. 不同土地利用方式土壤团聚体组成及几种团聚体稳定性指标的比较[J]. 农业工程学报, 2011, 27(1): 340-347. [22] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000: 106-190. [23] 关松荫, 张德生, 张志明. 土壤酶及其研究法[M]. 北京: 农业出版社, 1986: 260-344. [24] TAN C J, LUO Y F, FU T L. Soil microbial community responses to the application of a combined amendment in a historical zinc smelting area[J]. Environmental Science and Pollution Research. 2022, 29(9): 13056-13070. [25] 王敏, 李祥云, 赵征宇, 等. 番茄秸秆和菌菇渣还田对土壤团聚体稳定性及其有机碳分布的影响[J]. 山东农业科学, 2022, 54(2): 95-103. [26] ABIVEN S, MENASSERI S, ANGERS D A, et al. Dynamics of aggregate stability and biological binding agents during decomposition of organic materials[J]. European Journal of Soil Science, 2007, 58(1): 239-247. doi: 10.1111/j.1365-2389.2006.00833.x [27] SIX J, ELLIOTT E T, PAUSTIAN K. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture[J]. Soil Biology and Biochemistry, 2000, 32(14): 2099-2103. doi: 10.1016/S0038-0717(00)00179-6 [28] HU F N, XU C Y, LI H, et al. Particles interaction forces and their effects on soil aggregates breakdown[J]. Soil and Tillage Research, 2015, 147: 1-9. doi: 10.1016/j.still.2014.11.006 [29] XUE S G, WANG Q L, TIAN T, et al. Regional-scale investigation of salt ions distribution characteristics in bauxite residue: a case study in a disposal area[J]. Journal of Central South University, 2019, 26(2): 422-429. doi: 10.1007/s11771-019-4014-x [30] 宋松松, 胡斐南, 刘婧芳, 等. 土壤内外力共同作用下溅蚀团聚体粒径分布及迁移特征[J]. 中国水土保持科学(中英文), 2022, 20(3): 17-26. [31] LOVLEY D R, FRAGA J L, BLUNT HARRIS E L, et al. Humic substances as a mediator for microbially catalyzed metal reduction[J]. Acta Hydrochimica Et Hydrobiologica, 1998, 26(3): 152-157. doi: 10.1002/(SICI)1521-401X(199805)26:3<152::AID-AHEH152>3.0.CO;2-D [32] SIX J, BOSSUYT H, DEGRYZE S, et al. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics[J]. Soil and Tillage Research, 2004, 79(1): 7-31. doi: 10.1016/j.still.2004.03.008 [33] OADES J M. Soil organic matter and structural stability: mechanisms and implications for management[J]. Plant and Soil, 1984, 76(1): 319-337. [34] 王艳玲, 蒋发辉, 徐江兵, 等. 长期配施有机肥对旱地红壤微团聚体中有机碳含量的影响[J]. 土壤通报, 2018, 49(2): 377-384. [35] 王蕾, 王艳玲, 李欢, 等. 长期施肥下红壤旱地磷素有效性影响因子的冗余分析[J]. 中国土壤与肥料, 2021(1): 17-25. doi: 10.11838/sfsc.1673-6257.19549 [36] UPTON R N, BACH E M, HOFMOCKEL K S. Spatio-temporal microbial community dynamics within soil aggregates[J]. Soil Biology and Biochemistry, 2019, 132: 58-68. doi: 10.1016/j.soilbio.2019.01.016 [37] LU M Z, YANG M Y, YANG Y R, et al. Soil carbon and nutrient sequestration linking to soil aggregate in a temperate fen in Northeast China[J]. Ecological Indicators, 2019, 98: 869-878. doi: 10.1016/j.ecolind.2018.11.054 [38] ZHU F, LI Y B, XUE S G, et al. Effects of iron-aluminium oxides and organic carbon on aggregate stability of bauxite residues[J]. Environmental Science and Pollution Research. 2016, 23(9): 9073-9081. [39] WERNER F, MUELLER C W, THIEME J, et al. Micro-scale heterogeneity of soil phosphorus depends on soil substrate and depth[J]. Scientific Reports, 2017, 7(1): 3203. doi: 10.1038/s41598-017-03537-8 [40] YAN Y J, DAI Q H, HU G, et al. Effects of vegetation type on the microbial characteristics of the fissure soil-plant systems in karst rocky desertification regions of SW China[J]. Science of the Total Environment, 2020, 712: 136543. doi: 10.1016/j.scitotenv.2020.136543 [41] CUI Y X, FANG L C, GUO X B, et al. Ecoenzymatic stoichiometry and microbial nutrient limitation in rhizosphere soil in the arid area of the northern Loess Plateau, China[J]. Soil Biology and Biochemistry, 2018, 116: 11-21. doi: 10.1016/j.soilbio.2017.09.025 [42] WANG Y D, HU N, GE T D, et al. Soil aggregation regulates distributions of carbon, microbial community and enzyme activities after 23-year manure amendment[J]. Applied Soil Ecology, 2017, 111: 65-72. doi: 10.1016/j.apsoil.2016.11.015 [43] 李辉, 曲洋, 姚敏杰, 等. 赤泥自然成土过程及其微生物驱动机制[J]. 应用生态学报, 2021, 32(4): 1452-1460. [44] 黄荣珍, 王金平, 朱丽琴, 等. 杉木人工林土壤微团聚体中铁铝氧化物与微生物的分布及其关系[J]. 水土保持通报, 2022, 42(1): 1-9.