-
铅酸蓄电池具有价格低廉、安全性能高、适用范围广和再生性强等优点,广泛应用于电力、储能、国防、交通运输等重要领域[1]。据统计,铅酸蓄电池中的铅用量占我国铅消费总量的68%[2]。随着铅酸蓄电池在汽车、电动自行车和储能领域的大规模应用,废铅酸蓄电池回收处理与再生铅行业发展迅速。废铅酸蓄电池是一类典型的社会源危险废物,来源广泛且分散,非正规企业和个人开展非法收集处理导致的污染问题时有发生,严重危害人体健康和生态环境安全[3]。在危废管理制度下开展废铅酸蓄电池规范化回收处理,是我国推进“无废城市”建设试点工作的重要内容[4]。同时,废铅酸蓄电池循环利用所带来的减污降碳协同效益[5],也体现了发展循环经济对“双碳”目标实现的贡献和潜力。
生命周期评价方法 (Life cycle assessment, LCA) 是辨识、分析、评估产品环境影响的有效工具,可对铅酸蓄电池生产过程产生的环境影响和报废后回收处理过程产生环境效益进行全面评价。针对铅酸蓄电池的生命周期环境影响,有研究关注了铅酸蓄电池“从摇篮到坟墓”全过程[6-7],也有研究只关注了“从摇篮到大门”对应的生产过程[8]。同时,不少研究关注了回收处理过程的环境表现,如PAN等[9]基于能值评估企业回收废铅酸蓄电池的环境排放对人类健康和生态系统的影响。YU等[10]利用改进的能值分析方法评价废铅酸蓄电池资源化系统的效率和可持续性。有研究则对不同回收处理方案进行比较,如SUN等[11]基于中国铅行业的调查以及废铅酸蓄电池技术的发展,对不同资源化技术方案进行了半定量化评估;TIAN等[12]则利用生命周期评价方法比较了5种典型的废铅酸蓄电池资源化工艺,发现并非所有的湿法冶金工艺都在环境绩效上具有合理性;王琢璞等[13]也采用生命周期评价方法对废铅酸蓄电池回收制取再生铅合金、回收制铅锭再制电池材料和原生材料生产电池材料过程的环境影响进行比较,分析出不同回收过程中环境污染的关键环节和主要因子。
我国废铅酸蓄电池具有跨区域转移特征[14]。相应地,在生产者责任延伸制度 (Extended Producer Responsibility, EPR) 框架下,国家自2019年开展针对铅酸蓄电池生产企业集中收集和跨区域转移的试点工作。在政策影响下,废铅酸蓄电池回收处理的物质流过程及环境绩效均发生了变化[15-16]。然而,现有研究尚未清晰刻画EPR制度下的物质代谢特征和减污降碳效益。本研究针对已建立危险废物跨省市转移“白名单”机制的贵州省,聚焦废铅酸蓄电池收集、转运、拆解和再生处置的全过程,在现有回收处理模式调研和情景模拟的基础上,采用LCA对集中收集和跨区域转运制度下废铅酸蓄电池物质流过程与碳减排效益进行分析,为废铅酸蓄电池回收政策评估与优化提供决策支持。
集中收集和跨区域转运制度下废铅酸蓄电池物质流过程与碳减排效益分析——以贵州省为例
Material flow and carbon reduction benefit of spent lead-acid batteries under centralized collection and trans-regional transport system: Take Guizhou Province as an example
-
摘要: 集中收集和跨区域转运制度确立了我国铅酸蓄电池生产者责任延伸制 (EPR) 的实施路径。在危险废物管理框架下,集中收集和跨区域转运改变了废铅酸蓄电池的物质流过程,与之相关的资源环境效应变化也成为当前的重要研究课题。以贵州省为例,基于实地调研和系统模拟,采用物质流分析和生命周期评价方法分析了废铅酸蓄电池的产生特征、物质流过程和碳减排效益。结果表明,在集中收集与跨区域转运制度实施前,83.3%的废铅酸蓄电池进入再生铅企业,16.7%流入非正规处理企业,回收处理1 t废铅酸蓄电池的碳减排效益为923.1 kgCO2eq。开展情景分析发现,相对于无政策驱动的基准情景,集中收集和跨区域转运优化情景均能提升废铅酸蓄电池进入正规回收处理企业的比例,且碳减排效益分别提高到994.44和953.53 kgCO2eq∙t−1。这表明,基于EPR政策驱动的系统情景具有环境正效应,可作为当前废铅酸蓄电池回收处理系统完善和政策优化的方向。Abstract: The centralized collection and cross-regional transport system establishes the implementation path of the extended producer responsibility system (EPR) of lead-acid battery in China. Under the framework of hazardous waste management, centralized collection and cross-regional transfer have changed the material flow of spent lead-acid batteries, and the related changes in resource and environmental effects have also become an important research topic. Take Guizhou Province as an example, material flow analysis and life cycle assessment method were used to analyze the generation characteristics, material flow process and carbon emission reduction benefits of spent lead-acid batteries based on field investigation and system simulation. The results showed that before the implementation of the centralized collection and cross-regional transport system, 83.3% of the waste lead-acid batteries entered the lead-recycling enterprises, and 16.7% entered the informal processing enterprises. The carbon reduction benefit of spent lead-acid batteries recycling was 923.1 kgCO2eq/t. Through the scenario analysis, it was found that compared with the baseline system without policy driving force, the centralized collection and cross-regional transfer optimization scenarios could significantly increase the proportion of spent lead-acid batteries entering formal recycling enterprises, and the carbon reduction benefits were increased to 994.44 kgCO2eq/t and 953.53 kgCO2eq/t, indicating that the system scenario driven by the EPR policy had a positive environmental effect, and could be used as the direction for the improvement and policy optimization of the current spent lead-acid battery recycling system.
-
表 1 废铅酸蓄电池回收处理情景设置
Table 1. Optimization scenario setting of spent lead-acid battery recycling
关键环节 基准情景S1 优化情景S2 优化情景S3 收集方式 个体商流动回收 (55.6%) 专业第三方回收 (60.0%) 生产商自有渠道回收 (40.0%) 个体商流动回收 (55.6%) 专业第三方回收 (31.4%) 专业第三方回收 (31.4%) 生产商自有渠道回收 (13.0%) 生产商自有渠道回收 (13.0%) 收集距离 3 t卡车,运距302.77 km 9 t卡车,运距160 km9 t卡车,运距24 km 3 t卡车,运距302.77 km 9 t卡车,运距160 km 9 t卡车,运距160 km 9 t卡车,运距24 km 9 t卡车,运距24 km 转运范围 全 国 全 国 长江经济带上游区域 转运距离 30 t重卡,运距412.5 km 30 t重卡,运距412.5 km 30 t重卡,运距306.25 km 拆解过程 机械拆解+人工拆解 机械拆解 机械拆解 处置企业 再生铅企业+非正规处理厂 再生铅企业 再生铅企业 -
[1] 何艺, 靳晓勤, 金晶, 等. 废铅蓄电池收集利用污染防治主要问题分析和对策[J]. 环境保护科学, 2017, 43(3): 75-79. [2] 何艺, 郑洋, 何叶, 等. 中国废铅蓄电池产生及利用处置现状分析[J]. 电池工业, 2020, 24(4): 216-224. doi: 10.3969/j.issn.1008-7923.2020.04.009 [3] CHOWDHURY K, NURUNNAHAR S, KABIR M L, et al. Child lead exposure near abandoned lead acid battery recycling sites in a residential community in Bangladesh: Risk factors and the impact of soil remediation on blood lead levels[J]. Environmental Research, 2021, 194(25): 110689. [4] 生态环境部. 关于印发《“十四五”时期“无废城市”建设工作方案》的通知 [EB/OL]. [2022-6-1]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk03/202112/t20211215_964275.html. [5] 张喆, 陈小亮, 何艺, 等. 我国危险废物收集经营现状与创新实践[J]. 环境工程学报, 2021, 15(5): 1481-1486. doi: 10.12030/j.cjee.202008153 [6] MA Y, YU S, WANG J, et al. LCA/LCC analysis of starting-lighting-ignition lead-acid battery in China[J]. Peerj, 2018, 6(3): 5238. [7] LIU W, SANG J, CHEN L, et al. Life cycle assessment of lead-acid batteries used in electric bicycles in China[J]. Journal of Cleaner Production, 2015, 108: 1149-1156. doi: 10.1016/j.jclepro.2015.07.026 [8] GAO T, HU L, WEI M. Life Cycle Assessment (LCA)-based study of the lead-acid battery industry[J]. IOP Conference Series Earth and Environmental Science, 2021, 651(4): 042017. doi: 10.1088/1755-1315/651/4/042017 [9] PAN H, GENG Y, DONG H, et al. Sustainability evaluation of secondary lead production from spent lead acid batteries recycling[J]. Resources Conservation and Recycling, 2018, 140: 13-22. [10] YU J, YANG J, JIANG Z, et al. Emergy based sustainability evaluation of spent lead acid batteries recycling[J]. Journal of Cleaner Production, 2020, 250: 119467. doi: 10.1016/j.jclepro.2019.119467 [11] SUN Z, CAO H, ZHANG X, et al. Spent lead-acid battery recycling in China - A review and sustainable analyses on mass flow of lead[J]. Waste Management, 2017, 64: 190-201. doi: 10.1016/j.wasman.2017.03.007 [12] TIAN X, WU Y, HOU P, et al. Environmental impact and economic assessment of secondary lead production: Comparison of main spent lead-acid battery recycling processes in China[J]. Journal of Cleaner Production, 2017, 144: 142-148. doi: 10.1016/j.jclepro.2016.12.171 [13] 王琢璞, 温宗国. 废铅酸蓄电池回收制取再生铅合金技术的生命周期评价[J]. 环境科学学报, 2018, 38(3): 1245-1255. [14] TIAN X, WU Y, QU S, et al. Modeling domestic geographical transfers of toxic substances in WEEE: A case study of spent lead-acid batteries in China[J]. Journal of Cleaner Production, 2018, 198: 1559-1566. doi: 10.1016/j.jclepro.2018.07.089 [15] 何艺, 王维, 丁鹤, 等. 铅蓄电池落实生产者责任延伸制度成效与展望[J]. 环境工程学报, 2021, 15(7): 2218-2222. doi: 10.12030/j.cjee.202008156 [16] 李雪, 郭春霞, 陈耀宏, 等. 铅酸蓄电池行业生产者责任延伸制在我国实施的难点和解决方案[J]. 环境工程学报, 2020, 14(1): 3-8. doi: 10.12030/j.cjee.201910042 [17] 重庆市生态环境局. 长江经济带上游四省市建立危险废物联防联控机制与跨省市转移“白名单”合作机制 [EB/OL]. [2022-6-1]. http://sthjj.cq.gov.cn/zwgk_249/xwfb_67131/202011/t20201113_8459151.html. [18] 国务院办公厅. 国务院办公厅关于印发生产者责任延伸制度推行方案的通知 [EB/OL]. [2022-6-1]. http://www.gov.cn/zhengce/content/2017-01/03/content_5156043.htm. [19] 生态环境部办公厅. 关于印发《铅蓄电池生产企业集中收集和跨区域转运制度试点工作方案》的通知 [EB/OL]. [2021-6-1]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk05/201901/t20190131_691777.html. [20] 生态环境部办公厅. 关于继续开展铅蓄电池生产企业集中收集和跨区域转运制度试点工作的通知 [EB/OL]. [2022-6-1]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202012/t20201230_815495.html. [21] 王红梅, 夏月富, 席春青, 等. 铅酸蓄电池企业生产者责任延伸制度实施“瓶颈”分析[J]. 环境保护, 2018, 46(3/4): 56-59. doi: 10.14026/j.cnki.0253-9705.2018.z1.010 [22] WANG S, YU J, OKUBO K. Life cycle assessment on the reuse and recycling of the nickel-metal hydride battery: Fleet‐based study on hybrid vehicle batteries from Japan[J]. Journal of Industrial Ecology, 2021, 25(5): 1236-1249. doi: 10.1111/jiec.13126