-
抗生素在生产和使用过程中会产生大量含抗生素废水[1],制药废水是抗生素的最大来源,通常含抗生素浓度高、盐分高、毒性大,其处理是水处理领域中的一项难题[2]。磺胺甲恶唑(Sulfamethoxazole, SMZ)是一类典型的磺胺类抗生素,其在水体中相对稳定,不易被降解[3]。根据一项针对中国七大典型河流水域抗生素赋存的研究,SMZ的检出浓度最高[4],而且有研究表明人的尿液中可检出高达10 mg·L−1的SMZ[5]。SMZ对动植物以及人体健康均会造成危害,因此,研发利用高效的处理技术迫在眉睫。
许多研究表明,高级氧化技术对抗生素废水具有较好去除效果。其中电芬顿(electro-Fenton, EF)技术仅消耗O2和电能,绿色清洁、倍受关注[6-8]。EF技术可通过两电子氧还原反应(2e− ORR)原位生成H2O2,随后H2O2进一步被活化生成活性氧物种(reactive oxygen species, ROS),其可进一步高效去除水中抗生素[9-11]。基于铁离子催化的均相EF技术需在酸性条件下才能有效运行,反应前后需要调节pH,为拓宽EF技术的pH适用范围,开发了基于固相催化剂的非均相EF技术[12-14]。然而受阴极催化剂过渡金属氧化还原电对循环速率慢、稳定性差等限制[15],非均相EF技术对抗生素的降解效率亟待提升,开发高效稳定的阴极催化剂是目前非均相EF技术的主要应用瓶颈。
近年来,金属有机框架材料(metal organic framework, MOFs)是催化领域的研究热点,其不仅具有发达的孔隙结构,且拓扑结构能保障金属位点的均匀分散[16-19]。为了进一步促进金属氧化还原电对在催化反应中的循环速率,构建更多活性位点,研究通过组合不同种类的金属开发出系列双金属MOFs,显著提高了MOFs的催化活性[20-21]。然而MOFs作为EF阴极催化剂时导电性能欠佳[22-23],且其有机配体容易被EF反应中生成的ROS氧化,造成催化剂多孔结构坍塌及失活[24],因此,同步提高电学性能和化学稳定性是关键需求。
本研究以双金属MOFs—FeCo-ZIF为前体,以三聚氰胺(melamine, MA)为碳源和氮源,将两者共混煅烧制备了氮掺杂碳纳米管封装铁钴合金阴极催化剂(N-CNT@FeCo),考察了MA对FeCo-ZIF衍生催化剂EF性能的影响规律,探究了体系中的主要活性物种和催化机理,考察了溶液初始pH、应用电位、共存阴离子及重复循环次数对SMZ降解效果的影响,以评价N-CNT@FeCo作为EF阴极催化剂的基础应用性能。
封装型双金属阴极催化剂强化电芬顿技术高效去除磺胺甲恶唑
Highly efficient removal of sulfamethoxazole by encapsulated bimetallic cathode catalyst enhanced electro-Fenton technology
-
摘要: 传统非均相电芬顿(EF)技术主要面临活性氧物种生成速率慢、催化剂稳定性差等不足。将FeCo-ZIF和三聚氰胺(MA)共混(质量比为1:100)煅烧,成功制备出氮掺杂碳纳米管封装铁钴合金阴极催化剂(N-CNT@FeCo),可强化EF高效去除水中磺胺甲恶唑(SMZ,初始质量浓度为20 mg·L−1),在近中性条件下50 min内即可完全去除,降解速率常数可达0.057 min−1,是单独煅烧FeCo-ZIF制备的裸露型双金属催化剂FeCo-N的3倍,且前者的金属浸出总量(0.27 mg·L−1)仅为后者(1.79 mg·L−1)的15.1%。循环回用5次后,60 min内N-CNT@FeCo对SMZ的去除率仍可达到96.0%。扫描电子显微镜表征与电化学阻抗测试结果表明,由MA诱导生成的N-CNT,不仅通过封装结构有效限制了内部铁钴合金受强氧化性环境腐蚀破坏,而且显著加速了内部铁钴合金的电子传递速率,N-CNT@FeCo的独特封装结构使其兼具高催化活性和高稳定性。本研究为高效稳定的阴极催化剂提供了稳定、可控、易放大的封装策略。Abstract: The conventional non-homogeneous electro-Fenton (EF) technology mainly faces the deficiencies of slow generation rate of active oxygen species and poor catalyst stability. A nitrogen-doped carbon nanotube-encapsulated iron-cobalt alloy cathode catalyst (N-CNT@FeCo) was successfully prepared by calcination of FeCo-ZIF and melamine (MA) in a co-blend with mass ratio of 1:100, which could enhance EF to efficiently remove sulfamethoxazole (SMZ, initial concentration set as 20 mg·L−1) from water, and SMZ could be completely removed within 50 min under near-neutral conditions with degradation. The degradation rate constant was up to 0.057 min−1, which was two times higher than that of the bare bimetallic catalyst FeCo-N prepared by calcination of FeCo-ZIF alone, and the total metal leaching from the former (0.27 mg·L−1) was only 15.1% of that from the latter (1.79 mg·L−1). 96.0% of SMZ removal was still achieved at 60 min when N-CNT@FeCo was recycled after five times. Scanning electron microscopy analysis and electrochemical impedance test results showed that the N-CNT induced by MA not only effectively limited the corrosion damage of the internal iron-cobalt alloy by the strong oxidizing environment through the encapsulation structure, but also significantly accelerated the electron transfer rate of the internal iron-cobalt alloy, and the unique encapsulation structure of N-CNT@FeCo made it both highly catalytic activity and highly stable. This study provides a stable, tunable and easy to enlarge encapsulation strategy for the preparation of efficient and stable cathode catalysts.
-
Key words:
- electro-Fenton /
- encapsulate /
- bimetallic /
- iron-cobalt alloy /
- sulfamethoxazole
-
表 1 N-CNT@FeCo的循环回用性能
Table 1. Cyclic reuse performance of N-CNT@FeCo
循环次数 去除率/% 浸出量/(mg·L-1) Fe Co 第1次 100 0.19 0.08 第2次 100 0.27 0.10 第3次 96.6 0.31 0.30 第4次 96.0 0.24 0.27 第5次 96.0 0.13 0.28 -
[1] 孟庆玲, 欧晓霞, 张梦然, 等. 抗生素污染废水处理技术研究进展[J]. 绿色科技, 2021, 23(2): 81-83. doi: 10.3969/j.issn.1674-9944.2021.02.029 [2] 齐亚兵, 张思敬, 孟晓荣, 等. 抗生素废水处理技术现状及研究进展[J]. 应用化工, 2021, 50(9): 2587-2593. doi: 10.3969/j.issn.1671-3206.2021.09.054 [3] CARVALHO I T, SANTOS L. Antibiotics in the aquatic environments: A review of the European scenario[J]. Environment International, 2016, 94: 736-757. doi: 10.1016/j.envint.2016.06.025 [4] 赵富强, 高会, 张克玉, 等. 中国典型河流水域抗生素的赋存状况及风险评估研究[J]. 环境污染与防治, 2021, 43(1): 94-102. doi: 10.15985/j.cnki.1001-3865.2021.01.018 [5] ZHANG J J, LIU X J, ZHU Y T, et al. Antibiotic exposure across three generations from Chinese families and cumulative health risk[J]. Ecotoxicology and Environmental Safety, 2020, 191: 110237. doi: 10.1016/j.ecoenv.2020.110237 [6] QIU S Y, WANG Y, WAN J Q, et al. Enhanced electro-Fenton catalytic performance with in-situ grown Ce/Fe@NPC-GF as self-standing cathode: Fabrication, influence factors and mechanism[J]. Chemosphere, 2021, 273: 130269. doi: 10.1016/j.chemosphere.2021.130269 [7] DU X, FU W, SU P, et al. Trace FeCu@PC derived from MOFs for ultraefficient heterogeneous electro-Fenton process: Enhanced electron transfer and bimetallic synergy[J]. ACS ES& T Engineering, 2021, 1(9): 1311-1322. [8] CHENG S, ZHENG H, SHEN C, et al. Hierarchical iron phosphides composite confined in ultrathin carbon layer as effective heterogeneous electro-Fenton catalyst with prominent stability and catalytic activity[J]. Advanced Functional Materials, 2021, 31(48): 2106311. doi: 10.1002/adfm.202106311 [9] 王奇, 潘家荣, 梅朋森, 等. 电Fenton及光电Fenton法废水处理技术研究进展[J]. 三峡大学学报(自然科学版), 2008(2): 89-94. [10] LIU X C, HE C S, SHEN Z Y, et al. Mechanistic study of Fe(III) chelate reduction in a neutral electro-Fenton process[J]. Applied Catalysis B:Environmental, 2020, 278: 119347. doi: 10.1016/j.apcatb.2020.119347 [11] WANG Y Z, ZHANG H M, LI B K, et al. γ-FeOOH graphene polyacrylamide carbonized aerogel as air-cathode in electro-Fenton process for enhanced degradation of sulfamethoxazole[J]. Chemical Engineering Journal, 2019, 359: 914-923. doi: 10.1016/j.cej.2018.11.096 [12] GANIYU S O, ZHOU M H, MARTÍNEZ-HUITLE C A. Heterogeneous electro-Fenton and photoelectro-Fenton processes: A critical review of fundamental principles and application for water/wastewater treatment[J]. Applied Catalysis B:Environmental, 2018, 235: 103-129. doi: 10.1016/j.apcatb.2018.04.044 [13] ZHANG J J, QIU S, FENG H P, et al. Efficient degradation of tetracycline using core–shell Fe@Fe2O3-CeO2 composite as novel heterogeneous electro-Fenton catalyst[J]. Chemical Engineering Journal, 2022, 428: 131403. doi: 10.1016/j.cej.2021.131403 [14] ZHAO K, QUAN X, CHEN S, et al. Enhanced electro-Fenton performance by fluorine-doped porous carbon for removal of organic pollutants in wastewater[J]. Chemical Engineering Journal, 2018, 354: 606-615. doi: 10.1016/j.cej.2018.08.051 [15] YE Z H, PADILLA J A, XURIGUERA E, et al. A highly stable metal–organic framework-engineered FeS2/C nanocatalyst for heterogeneous electro-Fenton treatment: Validation in wastewater at mild pH[J]. Environmental Science & Technology, 2020, 54(7): 4664-4674. [16] YANG T Y, YU D Y, WANG D, et al. Accelerating Fe(Ⅲ)/Fe(Ⅱ) cycle via Fe(Ⅱ) substitution for enhancing Fenton-like performance of Fe-MOFs[J]. Applied Catalysis B:Environmental, 2021, 286: 119859. doi: 10.1016/j.apcatb.2020.119859 [17] YIN Y, REN Y, LU J H, et al. The nature and catalytic reactivity of UiO-66 supported Fe3O4 nanoparticles provide new insights into Fe-Zr dual active centers in Fenton-like reactions[J]. Applied Catalysis B:Environmental, 2021, 286: 119943. doi: 10.1016/j.apcatb.2021.119943 [18] YUAN R R, QIU J L, YUE C L, et al. Self-assembled hierarchical and bifunctional MIL-88A(Fe)@ZnIn2S4 heterostructure as a reusable sunlight-driven photocatalyst for highly efficient water purification[J]. Chemical Engineering Journal, 2020, 401: 126020. doi: 10.1016/j.cej.2020.126020 [19] ZHOU L, LI N, OWENS G, et al. Simultaneous removal of mixed contaminants, copper and norfloxacin, from aqueous solution by ZIF-8[J]. Chemical Engineering Journal, 2019, 362: 628-637. doi: 10.1016/j.cej.2019.01.068 [20] LI H X, ZHANG J, YAO Y Z, et al. Nanoporous bimetallic metal-organic framework (FeCo-BDC) as a novel catalyst for efficient removal of organic contaminants[J]. Environmental Pollution, 2019, 255: 113337. doi: 10.1016/j.envpol.2019.113337 [21] LI H X, YANG Z X, LU S, et al. Nano-porous bimetallic CuCo-MOF-74 with coordinatively unsaturated metal sites for peroxymonosulfate activation to eliminate organic pollutants: Performance and mechanism[J]. Chemosphere, 2021, 273: 129643. doi: 10.1016/j.chemosphere.2021.129643 [22] DU J, LI F, SUN L C. Metal–organic frameworks and their derivatives as electrocatalysts for the oxygen evolution reaction[J]. Chemical Society Reviews, 2021, 50(4): 2663-2695. doi: 10.1039/D0CS01191F [23] SUN L, CAMPBELL M G, DINCĂ M. Electrically conductive porous metal–organic frameworks[J]. Angewandte Chemie International Edition, 2016, 55(11): 3566-3579. doi: 10.1002/anie.201506219 [24] CHENG S, SHEN C, ZHENG H, et al. OCNTs encapsulating Fe-Co PBA as efficient chainmail-like electrocatalyst for enhanced heterogeneous electro-Fenton reaction[J]. Applied Catalysis B:Environmental, 2020, 269: 118785. doi: 10.1016/j.apcatb.2020.118785 [25] MENG J S, NIU C J, XU L H, et al. General oriented formation of carbon nanotubes from metal–organic frameworks[J]. Journal of the American Chemical Society, 2017, 139(24): 8212-8221. doi: 10.1021/jacs.7b01942 [26] 陆平. 草酸钛钾分光光度法测定Fenton高级氧化系统中的过氧化氢[J]. 建筑工程技术与设计, 2014(8): 582-582,517. doi: 10.3969/j.issn.2095-6630.2014.08.553 [27] LI Y S, FENG Y, LI L, et al. PBA@PPy derived N-doped mesoporous carbon nanocages embedded with FeCo alloy nanoparticles for enhanced performance of oxygen reduction reaction[J]. Journal of Alloys and Compounds, 2020, 823: 153892. doi: 10.1016/j.jallcom.2020.153892 [28] AGO H, KUGLER T, CACIALLI F, et al. Work functions and surface functional groups of multiwall carbon nanotubes[J]. The Journal of Physical Chemistry B, 1999, 103(38): 8116-8121. doi: 10.1021/jp991659y [29] LIU Q T, LIU X F, ZHENG L R, et al. The solid-phase synthesis of an Fe-N-C electrocatalyst for high-power proton-exchange membrane fuel cells[J]. Angewandte Chemie International Edition, 2018, 57(5): 1204-1208. doi: 10.1002/anie.201709597 [30] SU P, ZHOU M H, LU X Y, et al. Electrochemical catalytic mechanism of N-doped graphene for enhanced H2O2 yield and in-situ degradation of organic pollutant[J]. Applied Catalysis B:Environmental, 2019, 245: 583-595. doi: 10.1016/j.apcatb.2018.12.075 [31] HAIDER M R, JIANG W L, HAN J L, et al. In-situ electrode fabrication from polyaniline derived N-doped carbon nanofibers for metal-free electro-Fenton degradation of organic contaminants[J]. Applied Catalysis B:Environmental, 2019, 256: 117774. doi: 10.1016/j.apcatb.2019.117774 [32] LIU X, WANG L, YU P, et al. A stable bifunctional catalyst for rechargeable zinc-air batteries: Iron-cobalt nanoparticles embedded in a nitrogen-doped 3D carbon matrix[J]. Angewandte Chemie International Edition, 2018, 57(49): 16166-16170. doi: 10.1002/anie.201809009 [33] LIANG H W, WEI W, WU Z S, et al. Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction[J]. Journal of the American Chemical Society, 2013, 135(43): 16002-5. doi: 10.1021/ja407552k [34] FAN L S, WU H X, WU X, et al. Fe-MOF derived jujube pit like Fe3O4/C composite as sulfur host for lithium-sulfur battery[J]. Electrochimica Acta, 2019, 295: 444-451. doi: 10.1016/j.electacta.2018.08.107 [35] SU P, ZHOU M H, REN G B, et al. A carbon nanotube-confined iron modified cathode with prominent stability and activity for heterogeneous electro-Fenton reactions[J]. Journal of Materials Chemistry A, 2019, 7(42): 24408-24419. doi: 10.1039/C9TA07491K [36] QIN Y X, ZHANG L Z, AN T C. Hydrothermal carbon-mediated Fenton-like reaction mechanism in the degradation of alachlor: Direct electron transfer from hydrothermal carbon to Fe(III)[J]. ACS Applied Materials & Interfaces, 2017, 9(20): 17115-17124. [37] YOO S H, JANG D, JOH H-I, et al. Iron oxide/porous carbon as a heterogeneous Fenton catalyst for fast decomposition of hydrogen peroxide and efficient removal of methylene blue[J]. Journal of Materials Chemistry A, 2017, 5(2): 748-755. doi: 10.1039/C6TA07457J [38] RAO X F, SHAO X L, XU J, et al. Efficient nitrate removal from water using selected cathodes and Ti/PbO2 anode: Experimental study and mechanism verification[J]. Separation and Purification Technology, 2019, 216: 158-165. doi: 10.1016/j.seppur.2019.02.009 [39] WANG J L, WANG S Z. Reactive species in advanced oxidation processes: Formation, identification and reaction mechanism[J]. Chemical Engineering Journal, 2020, 401: 126158. doi: 10.1016/j.cej.2020.126158 [40] LIU Z, DING H J, ZHAO C, et al. Electrochemical activation of peroxymonosulfate with ACF cathode: Kinetics, influencing factors, mechanism, and application potential[J]. Water Research, 2019, 159: 111-121. doi: 10.1016/j.watres.2019.04.052 [41] CAO P K, QUAN X, ZHAO K, et al. Selective electrochemical H2O2 generation and activation on a bifunctional catalyst for heterogeneous electro-Fenton catalysis[J]. Journal of Hazardous Materials, 2020, 382: 121102. doi: 10.1016/j.jhazmat.2019.121102 [42] YANG Z C, QIAN J S, YU A Q, et al. Singlet oxygen mediated iron-based Fenton-like catalysis under nanoconfinement[J]. Proceedings of the National Academy of Sciences, 2019, 116(14): 6659-6664. doi: 10.1073/pnas.1819382116 [43] DENG J, YU L, DENG D H, et al. Highly active reduction of oxygen on a FeCo alloy catalyst encapsulated in pod-like carbon nanotubes with fewer walls[J]. Journal of Materials Chemistry A, 2013, 1(47): 14868-14873. doi: 10.1039/c3ta13759g [44] XIAO F, WANG Z N, FAN J Q, et al. Selective electrocatalytic reduction of oxygen to hydroxyl radicals via 3-electron pathway with FeCo alloy encapsulated carbon aerogel for fast and complete removing pollutants[J]. Angewandte Chemie International Edition, 2021, 60(18): 10375-10383. doi: 10.1002/anie.202101804