-
湖库富营养化已成为全球范围内的环境问题[1-3]。由于水体接纳过量的氮、磷等营养物质使得浮游生物大量繁殖,导致水体富营养化,水质逐渐恶化。湖库水体营养盐的来源通常分为内源和外源两个部分。内源一般是指沉积物中累积的营养盐再次释放进入上覆水中;外源则主要是通过地表径流途径进入库区水体[4-5]。入湖库河流是大部分湖库水体营养物质最主要的输入源[6]。
极端降水事件的发生使得河湖等水体扰动加剧,还会通过地表径流携带大量污染物进入水体[7-9],导致河湖水环境质量的变化。因此,研究极端降水对湖库上游河流水质特征的影响过程与规律,对流域水环境治理和水质安全保障具有重要意义。
岩口水库是浙江省义乌市最大的饮用水水源地之一,为义乌市近3.0×105人口提供日常供水。监测数据表明,岩口水库水体大部分水质指标能够满足湖库Ⅱ类标准,但在丰水期总磷为0.025~0.045 mg·L−1,总氮为0.7~1.5 mg·L−1,春、秋季节水体中叶绿素a浓度为4~20 μg·L−1,导致水库每年 4月~10月存在间歇性藻华暴发的风险。岩口小流域集水区为丘陵地形,分布有25个自然村,户籍人口为13 307人,流域内现存1 206 hm2农业用地,其中482 hm2(469~496 hm2)为桃树果园。库区水质极易受到流域内人类活动的影响,同时在降水发生时地表径流对地面的冲刷会导致入库河流污染物通量急剧增加,使得水库农业面源污染加剧,水质污染风险增大。
削减入库河流输入污染物总量是提升库区水质、防止富营养化和藻华暴发的前提条件。通过解析降水过程中入库河流水量水质的动态变化规律,阐明降水过程对入库溪流水质的影响,是控制库区水质污染负荷、保障水质安全的重要基础,也是有效核算水库外源输入污染负荷、制定削减方案的前提。
本研究基于“利奇马”(2019年)和“黑格比”(2020年)2次台风降水后岩口水库主要入库河流流量和水质变化情况的全过程监测数据,探究降水对入库河流不同断面水质、水量的影响过程和规律,解析降水过程中流域污染物流失过程及输出特征,评估极端降水条件下河道径流对库区水质、水量的影响,为科学制定入库污染负荷削减对策提供参考。
极端降水过程对岩口水库入库溪流污染负荷的影响及其对策
Influence of extreme rainfall process on pollution load of the inflow stream of Yankou reservoir and its countermeasures
-
摘要: 以岩口水库小流域为研究对象,通过监测2019年和2020年2次台风降水过程中入库河流氮磷通量变化,解析了极端降水事件对入库河流及下游库区污染负荷的影响,并评估极端降水条件下外源输入对库区水质污染的贡献。结果表明,降水历时和强度存在明显差异的两场暴雨全过程均可划分为4个典型阶段,即局部产流期、全流域产流期、水量消退期和流域恢复期。其中以全流域产流期(第Ⅱ阶段)污染负荷最重,输送了整个阶段50%以上的总磷负荷,且污染负荷的增长倍数与降水强度呈显著正相关。与降水前相比,台风“利奇马”和“黑格比”两场降水过程对下游岩口水库的入库总氮污染负荷分别增加了880 kg 和419 kg,总磷污染负荷分别增加了110 kg 和23 kg,而且增加的总氮以溶解态为主,总磷以颗粒态为主,说明地表径流冲刷导致河流中汇入了大量的面源污染负荷。本研究证实了极端降水事件,尤其是全流域产流阶段的降水会显著加剧流域面源对下游库区的污染贡献,建议采取合理的滞蓄、沉淀和净化等策略对地表径流污染负荷进行削减以降低下游库区水质污染风险。Abstract: The influence process of extreme rainfall events on the water pollution load of upstream rivers and downstream reservoirs in the basin was analyzed, and the contribution of external input to water pollution in the reservoir area under extreme rainfall conditions was evaluated, withthe small watershed of Yankou reservoir as the research object, by monitoring the changes of nitrogen and phosphorus flux of river entering the reservoir during two typhoon rainstorms in 2019 and 2020. The results showed that the whole process of the two rainstorms with obvious differences in rainfall duration and intensity can be divided into four typical stages: local runoff generation period, whole watershed runoff generation period, water volume regression period and watershed restoration period. The heaviest pollution load ocuured in the whole watershed runoff generation period (stage II). More than 50% of the total phosphorus load in the whole stage was transported in stage II and the increasing multiple of the pollution load was significantly correlated with the rainfall intensity. During the two rainstorms of LQM and HGB, TN load of Yankou reservoir increased by 880 kg and 419 kg, TP load increased by 109 kg and 23 kg respectively, compared with that before the rainfalls. It was showed that surface runoff erosion leaded to a large amount of non-point source pollution load into the river,since the increased total nitrogen was mainly dissolved, while the increased total phosphorus was mainly granular. The results of this study proved that extreme rainfall events, especially in the whole watershed runoff generation period, significantly aggravated the pollution contribution of non-point sources to the downstream reservoir area. Therefore, it is suggested to adopt reasonable strategies such as detention, sedimentation and purification to reduce the pollution load of surface runoff in order to reduce the risk of water pollution in the downstream reservoir area.
-
Key words:
- extreme rainfall /
- Yankou Reservoir /
- exogenous load /
- nitrogen and phosphorus flux /
- rainfall runoff
-
表 1 两场台风降水及河道径流特征
Table 1. Characteristics of rainfall and river runoff during the two typhoons
台风简称 单次降水量/mm 降水历时/h 降水特征 河道径流特征 级别 平均雨强/
(mm·h−1)最大雨强/
(mm·h−1)最大流量/
(m³·s−1)最小流量/
(m³·s−1)LQM 117.1 37 3.165 13.800 4.023 0.313 暴雨 HGB 59.8 12 4.983 25.700 2.000 0.102 暴雨 表 2 黄山溪不同断面营养盐通量及占Z104断面通量的比例
Table 2. Nutrient flux in different sections of Huangshan Stream and the proportion of the flux in Z104 in different sections
台风简称 断面 晴天总氮通
量/(g·h−1)晴天
比例/%雨天总氮通
量/(g·h−1)雨天
比例/%总氮增
长速度晴天总磷通
量/(g·h−1)晴天
比例/%雨天总磷通
量/(g·h−1)雨天
比例/%总磷增
长速度LQM Z95 466 11.3 11 295 39.6 23.23 4 1.7 839 35.0 186.23 Z94 783 19.0 6 782 23.8 7.66 38 14.5 1 136 47.4 28.97 Z93 396 9.6 6 532 22.9 15.49 14 5.2 391 16.3 27.91 Z91 3 698 89.8 19 490 68.4 4.27 217 83.1 1 671 69.7 6.72 Z104 4 117 100.0 28 492 100.0 5.92 261 100.0 2 397 100.0 8.20 Z110 4 112 99.9 26 300 92.3 5.40 258 98.9 2 224 92.8 7.63 平均 2 262 — 16 482 — 6.29 132 — 1 443 — 9.95 HGB Z95 238 16.2 4 062 12.3 16.10 7 8.0 299 13.5 40.55 Z94 194 13.2 5 927 17.9 29.49 22 23.9 322 14.5 13.67 Z93 638 43.4 2 571 7.8 3.03 20 22.2 188 8.5 8.34 Z91 1 469 99.9 19 865 60.1 12.52 87 95.6 1 870 84.2 20.38 Z104 1 470 100.0 33 062 100.0 21.49 91 100.0 2 220 100.0 23.28 Z110 1 425 96.9 31 046 93.9 20.79 98 107.2 1 961 88.2 19.02 平均 906 — 16 089 — 16.76 54 — 1 143 — 20.03 注:增长速度为(雨天通量-晴天通量)/晴天通量;比例为各断面通量占Z104断面通量的比例;—表示无法计算。 表 3 LQM和HGB雨前和暴雨径流过程各阶段营养盐通量
Table 3. Nutrient fluxes of LQM and HGB before the rain and at the stage of rainstorm runoff process
降水阶段LQM HGB 时长/h 总氮通量/(kg·h−1) 总磷通量/(kg·h-1) 总氮负荷/kg 总磷负荷/kg 流量百分比/% 时长/h 总氮通量/(kg·h−1) 总磷通量/(kg·h−1) 总氮负荷/kg 总磷负荷/kg 流量百分比/% 雨前 — 2.26 0.13 — — — — 0.91 0.05 — — — 局部产流期Ⅰ 5 2.7 0.15 13.49 0.72 1.14 0.5 0.95 0.06 0.47 0.03 0.11 暴雨径流期Ⅱ 32 17.49 2.06 559.78 65.81 49.38 11.5 16.85 1.17 193.8 13.4 30.98 水量消退期Ⅲ 37 12.01 1.35 444.33 49.9 42.2 28 9.22 0.42 258.03 11.79 58.41 流域恢复期Ⅳ 22 3.63 0.27 79.75 5.85 7.28 16 1.13 0.06 18.01 0.94 10.5 注:流量百分比为各降水阶段的流量占4个阶段流量总和的比值;—表示无法计算。 -
[1] WANG S, LI J, ZHANG B, et al. Trophic state assessment of global inland waters using a MODIS-derived Forel-Ule index[J]. Remote sensing of environment, 2018, 217: 444-460. doi: 10.1016/j.rse.2018.08.026 [2] 杨尚, 罗潋葱, 翟海涛, 等. 大沙河水库主要入库河流氮磷营养输入分析[J]. 生态科学, 2013, 32(2): 158-164. doi: 10.3969/j.issn.1008-8873.2013.02.004 [3] DAVIDSON K, GOWEN R J, HARRISON P J, et al. Anthropogenic nutrients and harmful algae in coastal waters[J]. Journal of environmental management, 2014, 146: 206-216. [4] 杨哲, 钟晓辉, 次新波, 等. 苕溪污染物入湖通量研究[J]. 浙江大学学报(理学版), 2013, 40(2): 196-206. [5] WANG S, QIAN X, WANG Q H, et al. Modeling Turbidity Intrusion Processes in Flooding Season of a Canyon-Shaped Reservoir, South China[J]. Procedia Environmental Sciences, 2012, 13(10): 1327-1337. [6] MAAVARA TAYLOR, PARSONS CHRISTOPHER T, RIDENOUR CHRISTINE, et al. Global phosphorus retention by river damming.[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(51): 15603-15608. doi: 10.1073/pnas.1511797112 [7] ZHAI P, ZHOU B, CHEN Y. A review of climate change attribution studies[J]. Journal of meteorological research, 2018, 32(5): 671-692. doi: 10.1007/s13351-018-8041-6 [8] TSAI J W, KRATZ T K, HANSON P C, et al. Seasonal dynamics, typhoons and the regulation of lake metabolism in a subtropical humic lake[J]. Freshwater Biology, 2010, 53(10): 1929-1941. [9] 夏星辉, 吴琼, 牟新利. 全球气候变化对地表水环境质量影响研究进展[J]. 水科学进展, 2012, 23(1): 124-133. [10] 张洪刚, 焦茹媛, 王聪, 等. 义乌市水库型水源地保护与水质提升策略研究——以岩口水库为例[J]. 环境保护科学, 2021, 47(2): 9-14. [11] 李瑞玲, 张永春, 刘庄, 等. 太湖缓坡丘陵地区雨强对农业非点源污染物随地表径流迁移的影响[J]. 环境科学, 2010, 31(5): 1220-1226. [12] 张宇航, 杨默远, 潘兴瑶, 等. 降雨场次划分方法对降雨控制率的影响分析[J]. 中国给水排水, 2019, 35(13): 122-127. [13] 中华人们共和国国家环境保护总局, 地表水环境质量标准GB 3838-2002, [S]. 北京: 中国环境科学出版社, 2012. http://www.mee.gov.cn/. [14] SANSALONE J J, BUCHBERGER S G. Partitioning and First Flush of Metals in Urban Roadway Storm Water[J]. Journal of Environmental Engineering, 1997, 123(2): 134-143. doi: 10.1061/(ASCE)0733-9372(1997)123:2(134) [15] 沈志良. 长江磷和硅的输送通量[J]. 地理学报, 2006, 61(7): 741-751. doi: 10.3321/j.issn:0375-5444.2006.07.008 [16] YIN Y N. Spacial-temporal variation of extreme precipitation indices in Zhejiang Province from 1971 to 2016[J]. Open Journal of Nature Science, 2019, 7(4): 294-306. doi: 10.12677/OJNS.2019.74040 [17] 莫康, 刘光裕, 贺治国, 等. 气候变化下浙江省极端降水时空变化研究[J]. 中国农村水利水电, 2021(3): 74-79. doi: 10.3969/j.issn.1007-2284.2021.03.015 [18] 李彤, 易雯, 付青, 等. 极端暴雨条件下北江重金属非点源污染负荷估算[J]. 环境科学研究, 2014, 27(9): 990-997. [19] 车蕊, 林澍, 范中亚, 等. 连续极端降水对东江流域水质影响分析[J]. 环境科学, 2019, 40(10): 4440-4449. [20] 杨帆, 蒋轶锋, 王翠翠, 等. 西湖龙泓涧流域暴雨径流氮磷流失特征[J]. 环境科学, 2016, 37(1): 141-147. [21] 于兴修, 李振炜, 刘前进, 等. 沂蒙山区典型小流域降水径流的磷素输出特征[J]. 环境科学, 2012, 33(8): 2644-2651. [22] 潘纲. 亚稳平衡态吸附(MEA)理论——传统吸附热力学理论面临的挑战与发展[J]. 环境科学学报, 2003, 23(2): 156-173. doi: 10.3321/j.issn:0253-2468.2003.02.003 [23] LEE J H, BANG K W. Characterization of urban stormwater runoff[J]. Water Research, 2000, 34(6): 1773-1780. doi: 10.1016/S0043-1354(99)00325-5 [24] FOSTER I, CHAPMAN A S, HODGKINSON R M, et al. Changing suspended sediment and particulate phosphorus loads and pathways in underdrained lowland agricultural catchments; Herefordshire and Worcestershire, U. K.[J]. Hydrobiologia, 2003, 494(1-3): 119-126. doi: 10.1023/A:1025497728181 [25] 王继增, 李定强. 广东省东江流域典型小流域非点源污染物流失规律研究[J]. 土壤侵蚀与水土保持学报, 1998, 4(3): 12-18. [26] 曾立雄, 黄志霖, 肖文发, 等. 三峡库区不同土地利用类型氮磷流失特征及其对环境因子的响应[J]. 环境科学, 2012, 33(10): 3390-3396. [27] GOOLSBY D A, BATTAGLIN W A, AULENBACH B T, et al. Nitrogen flux and sources in the Mississippi River Basin[J]. Science of the Total Environment, 2000, 248(2-3): 75-86. doi: 10.1016/S0048-9697(99)00532-X [28] 张韵, 郭胜, 封丽, 等. 三峡水库蓄水后不同水位期干流氮、磷时空分异特征[J]. 环境科学, 2011, 32(5): 1266-1272. [29] 郑丙辉, 王丽婧, 龚斌. 三峡水库上游河流入库面源污染负荷研究[J]. 环境科学研究, 2009, 22(2): 125-131. [30] 李玉凤, 刘红玉, 刘军志, 等. 农村多水塘系统景观结构对非点源污染中氮截留效应的影响[J]. 环境科学, 2018, 39(11): 4999-5005. [31] 王沛芳, 王超, 徐海波. 自然水塘湿地系统对农业非点源氮的净化截留效应研究[J]. 农业环境科学学报, 2006, 25(3): 782-785. doi: 10.3321/j.issn:1672-2043.2006.03.047 [32] 李玉凤, 刘红玉, 皋鹏飞, 等. 农村多水塘系统水环境过程研究进展[J]. 生态学报, 2016, 36(9): 2482-2489.