-
水体重金属污染是严重威胁生态、环境和人类健康的全球性问题之一[1]。镉是І类致癌物,具有生物积蓄性大、迁移能力强、半衰期长等特点[2]。其主要来源于人为活动(如采矿、电镀、颜料、电池等行业和冶炼排放的废渣、废气等),其排放造成水污染,严重影响陆地生态系统[3-4]。因此,迫切需要安全高效去除水体中的镉。
吸附法因其简单易操作被认为是去除水中镉污染的有效方法之一。其中,生物炭作为吸附剂具有廉价易得、物理化学性质稳定、官能团较多等特点,常被应用在重金属污染土壤和水体修复中[5-6]。但原始生物炭的分散性差、吸附能力有限,需通过活化或负载等手段提高吸附能力[7]。活化的制备工艺相对简单,可分为物理活化和化学活化。物理活化一般以CO2、H2O为活化剂,其操作简单,但活化后孔道分布不均,且能耗高。化学活化以ZnCl2[8]、KOH[9-10]、H3PO4[11]等为常用活化剂,其能耗低,但有些活化剂(如ZnCl2)会产生有毒气体。采用KOH活化可以有效改善炭材料孔道结构和比表面积,并且能够形成碳的官能团[12-13],不易产生二次污染。2步KOH活化法是利用已经炭化的前驱体与KOH混合均匀后共同热解制备得到的炭材料,其相对于1步活化法的优势在于能更好改善炭材料孔隙结构。目前大部分生物炭主要由小麦、玉米、水稻等秸秆制备而成,关于蚕沙生物炭吸附去除水体中镉的研究相对较少。2步KOH(浸渍-热解)活化法中每步对于炭材料的理化性质的影响及吸附贡献率也鲜见报道。
蚕沙是农业废弃物,其来源广泛,富含氨基酸、粗蛋白质和叶绿素等有机化合物,因此,在炭化后其可能含有较多活性基团。本研究以蚕沙生物炭为原料,以KOH为活化剂制备蚕沙基生物炭,分步探究了浸渍-热解活化法对炭材料理化性质的影响,并通过一系列的单因素实验考察了其对重金属Cd2+的吸附性能,以期为利用蚕沙制备高吸附性能生物炭提供参考。
KOH活化制备蚕沙基生物炭及其对镉的吸附特性
Study on adsorption and removal of cadmium by KOH activated silkworm excrement-based biochar
-
摘要: 以蚕沙生物炭为原料,以KOH为活化剂,通过浸渍(KBC)和浸渍-热解(KBC400)活化工艺制备蚕沙基生物炭,用于吸附去除水体中的镉离子(Cd2+)。运用一系列的表征技术分析了生物炭的形貌和性质,并通过批量实验考察了投加量、pH、共存离子、吸附时间和Cd2+浓度等因素对Cd2+吸附性能的影响。表征实验结果表明,活化的蚕沙基生物炭孔隙结构丰富、清晰,KBC400表面有KOH受热刻蚀的凹陷;生物炭的石墨化程度较高且表面带有负电荷。蚕沙基生物炭吸附Cd2+以静电作用和Cd2+-π键结合为主。吸附实验结果表明:在投加量为0.4 g·L−1、pH=5.0的条件下,KBC和KBC400的最大吸附量分别为63.80 mg·g−1和89.15 mg·g−1;在弱酸性(pH为4.0~6.0)和K+、Na+存在下对其吸附行为的影响较小;吸附过程更符合准二级动力学模型和Langmuir吸附等温方程,表明吸附以化学过程为主并且是单分子层吸附。综上所述,浸渍-热解活化方式更有利于增加其对Cd2+的吸附量;2步KOH活化法中第1步(浸渍)和第2步(热解)对于吸附Cd2+的相对贡献率分别为28.69%和71.31%。Abstract: In this study, the impregnating activation biochar (KBC) and impregnating-pyrolysis activation biochar (KBC400) were prepared with silkworm excrement biochar as raw material and KOH as activator. These silkworm excrement-based biochar was used to adsorb and remove Cd2+ in water. The surface structure and properties of biochar were analyzed by a series of characterization techniques. The effects of dosage, pH, coexisting ion, adsorption time, pollutant concentration on Cd2+ absorption property were investigated. The results of characterization techniques suggested that the surface pore structure of two types of activated biochar was rich and clear, and the etched surface of KBC400 by KOH was sunken. Biochar surface presented high graphitization degree and electronegative properties. Cd2+ adsorption on silkworm excrement biochar was dominated by electrostatic force and forming Cd2+-π bonding. The adsorption experimental results indicated at dosage of 0.4 g·L−1, solution pH value of 5.0, the maximum adsorption capacities of KBC and KBC400 fitted by the Langmuir model were 63.80 mg·g−1, 89.15 mg·g−1, respectively. Weakly acidic pH (4.0~6.0) or ion (K+ and Na+) had slight effects on the adsorption. The adsorption process accorded with pseudo-second-order kinetics and Langmuir adsorption isotherm equation, which implied that that adsorption of Cd2+ by activation biochar was dominated by chemical adsorption and could be described by monolayer adsorption. In conclusion, impregnating-pyrolysis activation method was favorable for the increase of Cd2+ adsorption capacity. The relative contribution rates of the first step (impregnation) and the second step (pyrolysis) to Cd2+ adsorption were 28.69% and 71.31%, respectively.
-
Key words:
- agricultural waste /
- biochar /
- alkali /
- graphitization /
- Cd2+ /
- adsorption
-
表 1 KBC和KBC400的孔隙信息
Table 1. Pore parameters of KBC and KBC400
材料 SBET/(m2·g−1) Vt/(cm3·g−1) Smic/(m2·g−1) dp/nm KBC 12.858 2 0.030 4 9.069 8 10.34 KBC400 21.769 1 0.038 3 16.367 9 14.25 表 2 BC、KBC、KBC400的动力学拟合参数
Table 2. Parameters of kinetic models of BC, KBC and KBC400
吸附剂 准一级动力学模型 准二级动力学模型 Weber-Morris模型 qe/(mg·g−1) K1/h−1 R2 K2/(g·(mg·h)−1) R2 R2 BC 39.58 0.155 5 0.958 0.043 7 0.998 0.742~0.938 KBC 50.59 0.172 9 0.965 0.054 6 0.999 0.920~0.951 KBC400 77.96 0.190 9 0.943 0.039 6 0.999 0.922~0.999 表 3 BC、KBC、KBC400的等温吸附拟合参数
Table 3. Parameters of isothermal adsorption model of BC, KBC and KBC400
吸附剂 Langmuir模型 Freundlich模型 qm/(mg·g−1) KL/(L·mg−1) R2 KF/(mg·g−1) n R2 BC 44.99 0.31 0.971 21.80 0.17 0.805 KBC 64.54 0.39 0.948 30.23 0.18 0.865 KBC400 84.12 48.73 0.874 65.43 0.08 0.842 -
[1] LAN J R, DONG Y Q, SUN Y, et al. A novel method for solidification/stabilization of Cd(II), Hg(II), Cu(II), and Zn(II) by activated electrolytic manganese slag[J]. Journal of Hazardous Materials, 2021, 409: 124933. doi: 10.1016/j.jhazmat.2020.124933 [2] TENG D Y, ZHANG B B, XU G M, et al. Efficient removal of Cd(II) from aqueous solution by pinecone biochar: Sorption performance and governing mechanisms[J]. Environmental Pollution, 2020, 265: 115001. [3] LIU P Y, RAO D A, ZOU L Y, et al. Capacity and potential mechanisms of Cd(II) adsorption from aqueous solution by blue algae-derived biochars[J]. Science of the Total Environment, 2021, 767: 145447. doi: 10.1016/j.scitotenv.2021.145447 [4] KHAN Z H, GAO M L, QIU W W, et al. Mechanisms for cadmium adsorption by magnetic biochar composites in an aqueous solution[J]. Chemosphere, 2020, 246: 125701. doi: 10.1016/j.chemosphere.2019.125701 [5] ZHAO Y L, ZHANG R Y, LIU H B, et al. Green preparation of magnetic biochar for the effective accumulation of Pb(II): Performance and mechanism[J]. Chemical Engineering Journal, 2019, 375: 122011. doi: 10.1016/j.cej.2019.122011 [6] LI H B, DONG X L, DA SILVA E B, et al. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications[J]. Chemosphere, 2017, 178: 466-478. doi: 10.1016/j.chemosphere.2017.03.072 [7] FU H C, MA S L, XU S J, et al. Hierarchically porous magnetic biochar as an efficient amendment for cadmium in water and soil: Performance and mechanism[J]. Chemosphere, 2021, 281: 130990. doi: 10.1016/j.chemosphere.2021.130990 [8] YANG K Y, XING J C, XU P P, et al. Activated carbon microsphere from sodium lignosulfonate for Cr(VI) adsorption evaluation in wastewater treatment[J]. Polymers, 2020, 12(1): 236. doi: 10.3390/polym12010236 [9] RAJAPAKSHA A U, CHEN S S, TSANG D C W, et al. Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification[J]. Chemosphere, 2016, 148: 276-291. doi: 10.1016/j.chemosphere.2016.01.043 [10] IDRIS-HERMANN K T, RAOUL T T D, GISCARD D, et al. Preparation and characterization of activated carbons from bitter kola (Garcinia kola) nut shells by chemical activation method using H3PO4; KOH and ZnCl2[J]. Chemical Science International Journal, 2018, 24(4): 1-15. [11] CHEN H Y, LI W Y, WANG J J, et al. Adsorption of cadmium and lead ions by phosphoric acid-modified biochar generated from chicken feather: Selective adsorption and influence of dissolved organic matter[J]. Bioresource Technology, 2019, 292: 121948. doi: 10.1016/j.biortech.2019.121948 [12] TU W W, LIU Y C, XIE Z F, et al. A novel activation-hydrochar via hydrothermal carbonization and KOH activation of sewage sludge and coconut shell for biomass wastes: Preparation, characterization and adsorption properties[J]. Journal of Colloid and Interface Science, 2021, 593: 390-407. doi: 10.1016/j.jcis.2021.02.133 [13] FU Y H, SHEN Y F, ZHANG Z D, et al. Activated bio-chars derived from rice husk via one- and two-step KOH-catalyzed pyrolysis for phenol adsorption[J]. Science of the Total Environment, 2019, 646: 1567-1577. doi: 10.1016/j.scitotenv.2018.07.423 [14] BASHIR S, ZHU J, FU Q L, et al. Comparing the adsorption mechanism of Cd by rice straw pristine and KOH-modified biochar[J]. Environmental Science and Pollution Research, 2018, 25(12S1): 11875-11883. [15] REN D J, YU H Y, WU J, et al. The study on adsorption behavior of 2, 4-DCP in solution by biomass carbon modified with CTAB-KOH[J]. Water Science and Technology, 2020, 82(8): 1535-1546. doi: 10.2166/wst.2020.418 [16] 丁赛赛, 刘高旗, 许红亮, 等. KOH活化法制备煤基活性炭及其吸附性能研究[J]. 化工新型材料, 2018, 46(4): 157-160. [17] ZHANG X F, ELSAYED I, SONG X Z, et al. Microporous carbon nanoflakes derived from biomass cork waste for CO2 capture[J]. Science of the Total Environment, 2020, 748: 142465. doi: 10.1016/j.scitotenv.2020.142465 [18] WANG J, KASKEL S. KOH activation of carbon-based materials for energy storage[J]. Journal of Materials Chemistry, 2012, 22(45): 23710-23725. doi: 10.1039/c2jm34066f [19] 赵力, 陈建, 李浩, 等. 裂解温度和酸处理对生物炭中持久性自由基产生的影响[J]. 环境化学, 2017, 36(11): 2472-2478. doi: 10.7524/j.issn.0254-6108.2017041004 [20] YIP K V, XU M H, LI C Z, et al. Biochar as a fuel: 3. Mechanistic understanding on biochar thermal annealing at mild temperatures and its effect on biochar reactivity[J]. Energy & Fuels, 2011, 25(1): 406-414. [21] HOSLETT J, GHAZAL H, KATSOU E, et al. The removal of tetracycline from water using biochar produced from agricultural discarded material[J]. Science of the Total Environment, 2021, 751: 141755. doi: 10.1016/j.scitotenv.2020.141755 [22] 景介辉, 黄玉东, 刘丽, 等. 炭/炭复合材料纤维束界面层的形成过程[J]. 无机材料学报, 2011, 26(12): 1309-1313. [23] 顾博文, 曹心德, 赵玲, 等. 生物质内源矿物对热解过程及生物炭稳定性的影响[J]. 农业环境科学学报, 2017, 36(3): 591-597. doi: 10.11654/jaes.2016-1160 [24] CHEN S J, XHA Y H, ZHANG B L, et al. Disassembly of lignocellulose into cellulose, hemicellulose, and lignin for preparation of porous carbon materials with enhanced performances[J]. Journal of Hazardous Materials, 2021, 408: 124956. doi: 10.1016/j.jhazmat.2020.124956 [25] WANG J, LIU T L, HUANG Q X, et al. Production and characterization of high quality activated carbon from oily sludge[J]. Fuel Processing Technology, 2017, 162: 13-19. doi: 10.1016/j.fuproc.2017.03.017 [26] WANG L W, BOLAN N S, TSANG D C W, et al. Green immobilization of toxic metals using alkaline enhanced rice husk biochar: Effects of pyrolysis temperature and KOH concentration[J]. Science of the Total Environment, 2020, 720: 137584. doi: 10.1016/j.scitotenv.2020.137584 [27] 张留洋, 游雪, 郭伲宏, 等. 磁性蚕砂基活性炭的制备及其在吸附方面的应用[J]. 广东化工, 2019, 46(3): 8-10. doi: 10.3969/j.issn.1007-1865.2019.03.004 [28] LIU N, LIU Y, ZENG G, et al. Adsorption of 17β-estradiol from aqueous solution by raw and direct/pre/post-KOH treated lotus seedpod biochar[J]. Journal of Environmental Sciences, 2020, 87(1): 10-23. [29] GAO Y, YUE Q Y, GAO B Y, et al. Preparation of high surface area-activated carbon from lignin of papermaking black liquor by KOH activation for Ni(II) adsorption[J]. Chemical Engineering Journal, 2013, 217: 345-353. doi: 10.1016/j.cej.2012.09.038 [30] ZHENG H, WANG Z Y, ZHAO J, et al. Sorption of antibiotic sulfamethoxazole varies with biochars produced at different temperatures[J]. Environmental Pollution, 2013, 181: 60-67. doi: 10.1016/j.envpol.2013.05.056 [31] JIN H M, CAPAREDA S, CHANG Z Z, et al. Biochar pyrolytically produced from municipal solid wastes for aqueous As(V) removal: Adsorption property and its improvement with KOH activation[J]. Bioresource Technology, 2014, 169: 622-629. doi: 10.1016/j.biortech.2014.06.103 [32] CHEN W, GONG M, LI K X, et al. Insight into KOH activation mechanism during biomass pyrolysis: Chemical reactions between O-containing groups and KOH[J]. Applied Energy, 2020, 278: 115730. doi: 10.1016/j.apenergy.2020.115730 [33] CHEN H Y, YANG X J, LIU Y L, et al. KOH modification effectively enhances the Cd and Pb adsorption performance of N-enriched biochar derived from waste chicken feathers[J]. Waste Management, 2021, 130: 82-92. doi: 10.1016/j.wasman.2021.05.015 [34] 宋泽峰, 石晓倩, 刘卓, 等. 芦苇生物炭的制备、表征及其吸附铜离子与双酚A的性能[J]. 环境化学, 2020, 39(8): 2196-2205. doi: 10.7524/j.issn.0254-6108.2019052001 [35] ZHANG D W, ZHANG K J, HU X L, et al. Cadmium removal by MgCl2 modified biochar derived from crayfish shell waste: Batch adsorption, response surface analysis and fixed bed filtration[J]. Journal of Hazardous Materials, 2021, 408: 124860. doi: 10.1016/j.jhazmat.2020.124860 [36] HERATH A, LAYNE C A, PERES F, et al. KOH-activated high surface area Douglas fir biochar for adsorbing aqueous Cr(VI), Pb(II) and Cd(II)[J]. Chemosphere, 2021, 269: 128409. doi: 10.1016/j.chemosphere.2020.128409 [37] LIU L H, YUE T T, LIU R, et al. Efficient absorptive removal of Cd(Ⅱ) in aqueous solution by biochar derived from sewage sludge and calcium sulfate[J]. Bioresource Technology, 2021, 336: 125333. doi: 10.1016/j.biortech.2021.125333 [38] WU J W, WANG T, WANG J W, et al. A novel modified method for the efficient removal of Pb and Cd from wastewater by biochar: Enhanced the ion exchange and precipitation capacity[J]. Science of the Total Environment, 2021, 754: 142150. doi: 10.1016/j.scitotenv.2020.142150 [39] 秦婷婷, 王兆炜, 朱俊民, 等. 花椰菜基生物炭对水中Pb(Ⅱ)的吸附性能[J]. 环境科学学报, 2017, 37(8): 2977-2988. [40] 蒋子旸, 徐敏, 伍钧. 高铁酸钾/高锰酸钾改性生物炭对Cd2+的吸附研究[J]. 农业环境科学学报, 2021, 40(4): 876-883. doi: 10.11654/jaes.2020-1123 [41] 史月月, 单锐, 袁浩然. 改性稻壳生物炭对水溶液中甲基橙的吸附效果与机制[J]. 环境科学, 2019, 40(6): 2783-2792.