-
挥发性有机化合物(volatile organic compounds, VOCs)通常指在常压下沸点低于260 ℃或室温时饱和蒸气压大于71 Pa的有机化合物[1]。VOCs除对人群健康有害之外,也是对流层臭氧、光化学污染物和二次有机气溶胶的重要前体物[2]。VOCs的成分复杂,来源广泛。根据VOCs化学结构的差异,可被分为烷烃类、烯烃类、卤代烃类、芳香烃类、酯类、醛类、酮类及其它有机化合物。工业生产是VOCs的主要人为排放源,排放量大。据统计,我国工业VOCs排放量由1980年的1.15×106 t增长到2010年的1.34×107 t,年均增长8.5%[3];2018年我国工业VOCs排放量为1.27×107 t[4]。2015年,《中华人民共和国大气污染防治法》首次将挥发性有机化合物纳入环境监管范畴;2019年7月,生态环境部印发了《重点行业挥发性有机物综合治理方案》,该方案要求到2020年完成“十三五”规划确定的VOCs排放总量减少10%的目标任务。由此可见,VOCs减排迫在眉睫。
VOCs去除技术可分为回收技术和销毁技术。回收技术主要通过吸收、吸附、冷凝、膜分离等物理方法,在净化VOCs的同时对其进行回收;销毁技术则是通过热催化氧化、生物降解、光催化氧化、等离子体催化等化学或生物方法,将VOCs转化为CO2和H2O[5]。吸附法由于具有效率高、成本低、能耗低、操作灵活等优点,在工业VOCs处理中得到广泛应用。
气体吸附净化效果很大程度上取决于吸附剂的性能,本文旨在综述工业VOCs的类型及特点,主要涵盖炭基材料、分子筛、金属有机骨架等常用吸附材料的性能及应用,并分析了影响VOCs吸附过程的主要因素,并梳理了吸附法净化工业VOCs中存在的问题,对其未来研究方向进行了展望。
吸附法净化工业VOCs的研究进展
Research progress on purification of VOCs in industrial gas by adsorption
-
摘要: 挥发性有机化合物(VOCs)是大气中PM2.5及O3的关键前体物,大多易燃易爆,部分属有毒有害物质,会造成大气环境污染,有损人群健康。吸附法因简单高效及低成本等优点被广泛应用于VOCs的净化。综述了工业VOCs的类型及特点,分析了影响VOCs吸附净化效果的主要因素,如吸附材料、吸附剂物化参数(比表面积、孔结构、表面官能团)、吸附质特性(分子极性、分子结构、沸点)、操作参数(温度、湿度、VOCs浓度)及吸附剂再生,并梳理了吸附法净化VOCs工艺应用中存在的问题,展望了未来的研究方向,以期为该领域的应用提供参考。Abstract: Volatile organic compounds (VOCs) are the key precursors of PM2.5 and O3 in the atmosphere. Most of them are flammable and explosive, and some of them are toxic and hazardous substances, which are harmful to human health. Adsorption method is widely used for purification of VOCs due to advantages of its simplicity, high efficiency and low cost. This review summarized the types and characteristics of VOCs in industrial gas, the main factors affecting the efficiencies of adsorption and purification, such as adsorbent, physical and chemical parameters of adsorbents (specific surface area, porous structure, and surface functional groups), characteristics of adsorbate (molecular polarity, molecular structure, and boiling point), operating parameters (temperature, humidity, and concentration of VOCs) and the regeneration of adsorbent. Moreover, the problems existing in the purification of VOCs by adsorption were summarized and the future research directions were prospected.
-
Key words:
- volatile organic compounds /
- adsorption /
- porous materials /
- modification
-
表 1 重点行业主要排放的VOCs种类
Table 1. Types of VOCs mainly emitted by the key industries
重点行业 具体生产流程 VOCs种类 石化行业 原油加工及石油制品制造、有机化学原料制造、初级形态塑料及合成树脂制造、合成橡胶制造、合成纤维单(聚合)体制造等 丁烷、戊烷、乙醇、苯、甲苯、二甲苯[7] 化工行业 石油、煤炭及其他燃料加工业、化学原料和化学制品制造、医药制造业、化学纤维制造业等 专项化学品制造:含氧VOCs、芳香烃[8];化学医药制造:苯类、醇类、酮类、醚类化合物[9] 工业涂装 汽车制造、船舶制造等运输设备制造、家具制造、卷材制造、金属制品、通用设备制造、专用设备制造等 汽车零配件涂装:芳香烃、含氧VOCs[10];机械和船舶制造:甲醛和乙醛、烯烃、芳烃及烷烃[11] 包装印刷 塑料软包装印刷、彩盒印刷、印铁制罐、标签印刷 凸版印刷:苯、甲苯[12];胶印和凹版印刷:乙酸乙酯、异丙醇[12];柔印:乙醇、乙酸乙酯[13] 表 2 VOCs净化中常见的吸附剂及其性能
Table 2. Application of adsorbents for purification of VOCs
吸附剂种类 吸附质 比表面积/
(m2·g−1)孔隙体积/
(cm3·g−1)吸附量/
(mg·g−1)参考文献 活性炭 甲苯、Cl-VOCs、乙苯、对二甲苯 478~3 167 0.41~1.75 170~737 [14−17] 活性炭纤维 甲苯、异丙醇、乙酸乙酯、丙酮、甲醛 810~1 400 0.36~0.92 84~221 [19−20,22] 生物炭 苯、甲苯、丙酮、环己烷、甲苯 448~639 — 5.58~236.36 [23−25] 石墨烯 苯、甲苯 106~2 630 — 216~304 [29] 分子筛 甲苯、苯、甲醇、正己烷 510~1 769 0.24~1.22 56.6~142 [37−38] 金属有机骨架 苯、甲苯、邻二甲苯、间二甲苯、
乙苯、丙酮、CH2Cl2、CHCl31 140~4 293 0.64~2.42 240~1 375 [18,40−43] 表 3 常见VOCs的分子动力学直径及临界直径
Table 3. Molecular kinetic diameter and critical diameter of common VOCs
VOCs种类 分子动力学直径/nm 临界直径/nm VOCs种类 分子动力学直径/nm 临界直径/nm 苯 0.67 0.68 甲醇 0.43 0.44 甲苯 0.67 0.67 甲醛 0.404 — 二甲苯 0.70 0.74 丙酮 0.50 — 甲烷 0.38 0.4 乙酸乙酯 0.48 — 丙烷 0.432 0.489 正己烷 — 0.61 表 4 常见VOCs的极性指数
Table 4. Polarity indices of common VOCs
VOCs种类 极性指数 VOCs种类 极性指数 苯 2.7 甲醇 6.6 甲苯 2.4 异丙醇 4.3 二甲苯 2.5 丙酮 5.1 正己烷 0.06 乙酸乙酯 4.3 表 5 吸附剂孔隙结构对吸附的影响
Table 5. Effect of adsorbent porous structure on adsorption
吸附材料种类 VOCs种类 比表面积/(m2·g−1) 孔隙体积/(cm3·g−1) 微孔体积/(cm3·g−1) 吸附量/(mg·g−1) 参考文献 1#硅胶 丙酮 766 0.44 — 118.9 [67] 1#硅胶 乙酸乙酯 766 0.44 — 254.1 [67] 3#硅胶 丙酮 380 0.85 — 57.9 [67] 3#硅胶 乙酸乙酯 380 0.85 — 142.4 [67] HPC-800 甲苯 222 0.32 0.05 75 [68] HPC-800 苯 222 0.32 0.05 37 [68] HPC-900 甲苯 578 0.62 0.20 182 [68] HPC-900 苯 578 0.62 0.20 102 [68] HPC-1000 甲苯 349 0.68 0.04 122 [68] HPC-1000 苯 349 0.68 0.04 44 [68] 表 6 部分吸附材料多次吸附-解吸的性能
Table 6. Performance of multiple adsorption-desorption of some adsorbents
-
[1] ZHANG X Y, GAO B, CREAMER A E, et al. Adsorption of VOCs onto engineered carbon materials: A review[J]. Journal of Hazardous Materials, 2017, 338: 102-123. doi: 10.1016/j.jhazmat.2017.05.013 [2] YANG Y, JI D S, SUN J, et al. Ambient volatile organic compounds in a suburban site between Beijing and Tianjin: Concentration levels, source apportionment and health risk assessment[J]. Science of the Total Environment, 2019, 695: 133889. doi: 10.1016/j.scitotenv.2019.133889 [3] QIU K Q, YANG L X, LIN J M, et al. Historical industrial emissions of non-methane volatile organic compounds in China for the period of 1980-2010[J]. Atmospheric Environment, 2014, 86: 102-112. doi: 10.1016/j.atmosenv.2013.12.026 [4] 梁小明, 孙西勃, 徐建铁, 等. 中国工业源挥发性有机物排放清单[J]. 环境科学, 2020, 41(11): 4767-4775. [5] ZHANG X M, XUE Z G, LI H, et al. Ambient volatile organic compounds pollution in China[J]. Journal of Environmental Science, 2017, 55(5): 69-75. [6] BARI M A, KINDZIERSKI W B. Ambient volatile organic compounds (VOCs) in Calgary, Alberta: Sources and screening health risk assessment[J]. Science of the Total Environment, 2018, 631-632: 627-640. doi: 10.1016/j.scitotenv.2018.03.023 [7] 梁文萍. 石化企业典型区域VOCs污染特征及来源解析[J]. 现代化工, 2019, 39(9): 5-10. [8] 盛涛, 高宗江, 高松, 等. 上海市专项化学品制造行业VOCs排放特征及臭氧生成潜势研究[J]. 环境科学研究, 2019, 32(5): 830-838. [9] 席劲瑛, 胡洪营, 武俊良, 等. 不同行业点源产生VOCs气体的特征分析[J]. 环境科学研究, 2014, 27(2): 134-138. [10] 邹文君, 修光利, 鲍仙华, 等. 汽车零配件涂装过程VOCs排放特征与案例分析[J]. 环境科学研究, 2019, 32(8): 1358-1364. [11] WANG R C, YUAN Z B, ZHENG J Y, et al. Characterization of VOC emissions from construction machinery and river ships in the Pearl River Delta of China[J]. Journal of Environmental Sciences, 2020, 96(10): 138-150. [12] TANG J H, CHU K W, CHAN L Y, et al. Non-methane hydrocarbon emission profiles from printing and electronic industrial processes and its implications on the ambient atmosphere in the Pearl River Delta, South China[J]. Atmospheric Pollution Research, 2013, 5(1): 151-160. [13] BRAVO D, FERRERO P, PENYA-ROJA J M, et al. Control of VOCs from printing press air emissions by anaerobic bioscrubber: Performance and microbial community of an on-site pilot unit[J]. Journal of Environmental Management, 2017, 197: 287-295. [14] 赵文峰, 曹利, 黄学敏. 微波制备秸秆活性炭及其对甲苯吸附性能的研究[J]. 环境科学与技术, 2014, 37(10): 108-111. [15] HSU S H, HUANG C S, CHUNG T W, et al. Adsorption of chlorinated volatile organic compounds using activated carbon made from Jatropha curcas seeds[J]. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(5): 2526-2530. doi: 10.1016/j.jtice.2014.05.028 [16] BEDANE A H, GUO T X, EIC M, et al. Adsorption of volatile organic compounds on peanut shell activated carbon[J]. Canadian Journal of Chemical Engineering, 2019, 97(1): 238-246. doi: 10.1002/cjce.23330 [17] ZHU J, LI Y H, XU L, et al. Removal of toluene from waste gas by adsorption-desorption process using corncob-based activated carbons as adsorbents[J]. Ecotoxicology and Environmental Safety, 2018, 165: 115-125. doi: 10.1016/j.ecoenv.2018.08.105 [18] LI X Q, ZHANG L, YANG Z Q, et al. Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: A review[J]. Separation and Purification Technology, 2020, 235: 116213. doi: 10.1016/j.seppur.2019.116213 [19] 姚炜屹, 王际童, 乔文明, 等. 活性炭纤维孔结构和表面含氧官能团对甲醛吸附性能的影响[J]. 华东理工大学学报(自然科学版), 2019, 45(5): 697-703. [20] 赵海洋, 卢晗锋, 姜波, 等. 挥发性有机物在活性炭纤维上的吸附和电致热脱附[J]. 中国环境科学, 2016, 36(7): 1981-1987. doi: 10.3969/j.issn.1000-6923.2016.07.011 [21] 周平, 张忠良, 游俊琴, 等. 活性炭纤维织物床层对乙酸乙酯的动态吸附[J]. 新型炭材料, 2019, 34(4): 325-332. [22] ZHU L, SHEN D, LUO K H, et al. A critical review on VOCs adsorption by different porous materials: Species, mechanisms and modification methods[J]. Journal of Hazardous Materials, 2020, 389: 122102. doi: 10.1016/j.jhazmat.2020.122102 [23] KHAN A, SZELEJKO J E, SAMADDAR P, et al. The potential of biochar as sorptive media for removal of hazardous benzene in air[J]. Chemical Engineering Journal, 2019, 361: 1576-1585. doi: 10.1016/j.cej.2018.10.193 [24] CREAMER A E, ZHANG X Y, GAO B, et al. Biochar for volatile organic compound (VOC) removal: Sorption performance and governing mechanisms[J]. Bioresource Technology, 2017, 245: 606-614. doi: 10.1016/j.biortech.2017.09.025 [25] 李桥, 雍毅, 丁文川, 等. 紫外辐照改性生物炭对VOCs的动态吸附[J]. 环境科学, 2016, 37(6): 2065-2072. [26] KOBRA R S, ALIMORAD R, PARVIZ A A, et al. Synthesis of graphene by in situ catalytic chemical vapor deposition of reed as a carbon source for VOC adsorption[J]. Environmental Science and Pollution Research, 2019, 26(4): 3643-3650. doi: 10.1007/s11356-018-3799-8 [27] 王喆. 石墨烯的制备及其对甲苯的吸附性能[J]. 石油化工, 2019, 48(11): 1110-1113. doi: 10.3969/j.issn.1000-8144.2019.11.004 [28] LIM S T, KIM J H, LEE C Y, et al. Mesoporous graphene adsorbents for the removal of toluene and xylene at various concentrations and its reusability[J]. Scientific Reports, 2019, 9(1): 10922. doi: 10.1038/s41598-019-47100-z [29] YU L, WANG L, XU W C, et al. Adsorption of VOCs on reduced graphene oxide[J]. Journal of Environmental Sciences, 2018, 67(5): 171-178. [30] CHO H H, SMITH B A, WNUK J D, et al. Influence of surface oxides on the adsorption of naphthalene onto multiwalled carbon nanotubes[J]. Environmental Science and Technology, 2008, 42(8): 2899-2905. doi: 10.1021/es702363e [31] SHIH Y H, LI M S. Adsorption of selected volatile organic vapors on multiwall carbon nanotubes[J]. Journal of Hazardous Materials, 2008, 154(1/2/3): 21-28. doi: 10.1016/j.jhazmat.2007.09.095 [32] BANG J, YOU D W, JANG Y, et al. A carbon nanotube sponge as an adsorbent for vapor preconcentration of aromatic volatile organic compounds[J]. Journal of Chromatography A, 2019, 1605: 460363. doi: 10.1016/j.chroma.2019.460363 [33] 周艺蓉. 碳纳米管对挥发性有机污染物的吸附机理研究[D]. 大连: 大连理工大学, 2012. [34] DENG H, PAN T T, ZHANG Y, et al. Adsorptive removal of toluene and dichloromethane from humid exhaust on MFI, BEA and FAU zeolites: An experimental and theoretical study[J]. Chemical Engineering Journal, 2020, 394: 124986. doi: 10.1016/j.cej.2020.124986 [35] 薛梦婷, 李勇. VOCs 在分子筛上吸附性能的研究进展[J]. 无机盐工业, 2019, 51(5): 12-16. [36] 吕双春, 葛云丽, 赵倩, 等. 高硅分子筛的合成及其在VOCs吸附去除领域的应用[J]. 环境化学, 2017, 36(7): 1492-1505. doi: 10.7524/j.issn.0254-6108.2017.07.2016102403 [37] 张媛媛, 王笠力, 何丽, 等. 分子筛改性及其在高湿条件下对甲苯的吸附[J]. 环境工程学报, 2017, 11(10): 5509-5514. doi: 10.12030/j.cjee.201611224 [38] LI R N, XUE T S, LI Z, et al. Hierarchical structure ZSM-5/SBA-15 composite with improved hydrophobicity for adsorption-desorption behavior of toluene[J]. Chemical Engineering Journal, 2020, 392: 124861. doi: 10.1016/j.cej.2020.124861 [39] KIM K H, SZULEJKO J E, RAZA N, et al. Identifying the best materials for the removal of airborne toluene based on performance metrics: A critical review[J]. Journal of Cleaner Production, 2019, 241: 118408. doi: 10.1016/j.jclepro.2019.118408 [40] WANG C P, YIN H, TIAN P J, et al. Remarkable adsorption performance of MOF-199 derived porous carbons for benzene vapor[J]. Environmental Research, 2020, 184: 109323. doi: 10.1016/j.envres.2020.109323 [41] 孙茜. 金属-有机骨架材料MIL-101对典型挥发性有机物(VOCs)的吸附性能及机理[D]. 杭州: 浙江大学, 2011. [42] 王铭扬, 田凤鸣, 周林, 等. 金属有机骨架材料MIL-53对氯代甲烷的吸附[J]. 功能材料, 2016, 47(5): 5063-5067. doi: 10.3969/j.issn.1001-9731.2016.05.011 [43] 黄思思. 金属-有机骨架材料-MOF-5和MIL-101的合成及其对VOCs的吸附/脱附性能[D]. 广州: 华南理工大学, 2010. [44] 杨建成, 王诗宁, 杨硕, 等. 金属有机框架材料吸附VOCs影响因素研究进展[J]. 化工进展, 2021, 40(1): 463-476. [45] 李竞草, 吴冬霞, 常丽萍, 等. 疏水性金属-有机骨架材料的研究进展[J]. 化工进展, 2020, 39(1): 224-232. [46] 李孟, 李炜, 张帅, 等. MOF及其复合材料吸附去除VOCs应用研究进展[J]. 化工进展, 2021, 40(1): 415-426. [47] HAN Z W, KONG S L, SUI H, et al. Preparation of carbon-silicon doping composite adsorbent material for removal of VOCs[J]. Materials, 2019, 12(15): 2438. doi: 10.3390/ma12152438 [48] ZHANG G X, FEIZBAKHSHAN M, ZHENG S L, et al. Effects of properties of minerals adsorbents for the adsorption and desorption of volatile organic compounds (VOC)[J]. Applied Clay Science, 2019, 173: 88-96. doi: 10.1016/j.clay.2019.02.022 [49] ZHANG G X, LIU Y Y, ZHENG S L, et al. Adsorption of volatile organic compounds onto natural porous minerals[J]. Journal of Hazardous Materials, 2019, 364: 317-324. doi: 10.1016/j.jhazmat.2018.10.031 [50] SAHIN O, KUTLUAY S, HOROZ S, et al. Fabrication and characterization of 3, 4-diaminobenzophenone -functionalized magnetic nanoadsorbent with enhanced VOC adsorption and desorption capacity[J]. Environmental Science and Pollution Research International, 2021, 28(5): 5231-5253. [51] YANG P, SONG M, KIM D, et al. Synthesis conditions of porous clay heterostructure (PCH) optimized for volatile organic compounds (VOC) adsorption[J]. Korean Journal of Chemical Engineering, 2019, 36(11): 1806-1813. doi: 10.1007/s11814-019-0369-9 [52] YANG K, SUN Q, XUE F, et al. Adsorption of volatile organic compounds by metal-organic frameworks MIL-101: Influence of molecular size and shape[J]. Journal of Hazardous Materials, 2011, 195(15): 124-131. [53] LI L Q, SUN Z, LI H L, et al. Effects of activated carbon surface properties on the adsorption of volatile organic compounds[J]. Journal of the Air and Waste Management Association, 2012, 62(10): 1196-1202. doi: 10.1080/10962247.2012.700633 [54] 梁鑫. 有机酸改性活性炭及其VOCs吸附行为研究[D]. 长沙: 中南大学, 2014. [55] 梁欣欣, 卜龙利, 刘嘉栋, 等. 分子筛负载型吸附剂对典型VOCs的吸附行为特性[J]. 环境工程学报, 2016, 10(6): 3152-3160. doi: 10.12030/j.cjee.201501108 [56] PAK S H, JEON M J, JEON Y W. Study of sulfuric acid treatment of activated carbon used to enhance mixed VOC removal[J]. International Biodeterioration and Biodegradation, 2016, 113: 195-200. doi: 10.1016/j.ibiod.2016.04.019 [57] MENG F Y, SONG M, WEI Y X, et al. The contribution of oxygen-containing functional groups to the gas-phase adsorption of volatile organic compounds with different polarities onto lignin-derived activated carbon fibers[J]. Environmental Science and Pollution Research, 2019, 26(7): 7159-7204. [58] 刘寒冰, 姜鑫, 王新, 等. PDMS基涂层活性炭对甲苯、苯和丙酮吸附研究[J]. 环境科学, 2016, 37(4): 1287-1294. [59] 张智, 马修卫, 李津津, 等. 中高温环境下 VOCs 在活性炭上的吸附性能研究[J]. 化工学报, 2019, 70(12): 4811-4820. [60] 李立清, 宋剑飞, 孙政, 等. 三种VOCs物性对其在活性炭上吸附行为的影响[J]. 化工学报, 2011, 62(10): 2784-2790. doi: 10.3969/j.issn.0438-1157.2011.10.016 [61] 曹利, 黄学敏, 宋文斌, 等. 用修正的E-L模型描述二元VOCs气体在活性炭上的吸附平衡[J]. 环境工程学报, 2011, 5(10): 2326-2330. [62] XIANG W, ZHANG X Y, CHEN K Q, et al. Enhanced adsorption performance and governing mechanisms of ball-milled biochar for the removal of volatile organic compounds (VOCs)[J]. Chemical Engineering Journal, 2020, 385: 123842. doi: 10.1016/j.cej.2019.123842 [63] 张越华. 挥发性有机污染物在活性碳纤维上的吸附行为研究与过程设计[D]. 杭州: 浙江大学, 2018. [64] 罗瑞, 陈旺, 张进, 等. 碱处理和掺氮耦合改性对活性炭纤维吸附甲醛性能的影响[J]. 环境工程学报, 2018, 12(10): 2791-2796. doi: 10.12030/j.cjee.201804158 [65] 岳旭, 王胜, 高杨, 等. VOCs在吸附剂上吸附性能的热力学研究[J]. 燃料化学学报, 2020, 48(6): 752-760. doi: 10.3969/j.issn.0253-2409.2020.06.015 [66] MA X C, LI L Q, CHEN R F, et al. Porous carbon materials based on biomass for acetone adsorption: Effect of surface chemistry and porous structure[J]. Applied Surface Science, 2018, 459: 657-664. doi: 10.1016/j.apsusc.2018.07.170 [67] 刘纪江, 隋红, 王泽利, 等. 极性VOCs组分在硅胶上的吸脱附性质研究[J]. 现代化工, 2018, 38(12): 181-185. [68] TANG M H, HUANG X L, PENG Y Q, et al. Hierarchical porous carbon as a highly efficient adsorbent for toluene and benzene[J]. Fuel, 2020, 270: 117478. doi: 10.1016/j.fuel.2020.117478 [69] QIU W J, DOU K, ZHOU Y, et al. Hierarchical pore structure of activated carbon fabricated by CO2/microwave for volatile organic compounds adsorption[J]. Chinese Journal of Chemical Engineering, 2018, 26(1): 81-88. doi: 10.1016/j.cjche.2017.04.006 [70] 刘洋, 白金锋, 李彬, 等. 微孔活性炭对对二甲苯的吸附和脱附性能[J]. 煤炭转化, 2017, 40(1): 53-58. doi: 10.3969/j.issn.1004-4248.2017.01.009 [71] MEKKI A, BOUKOUSSA B. Structural, textural and toluene adsorption properties of microporous-mesoporous zeolite omega synthesized by different methods[J]. Journal of Materials Science, 2019, 54(11): 8096-8107. doi: 10.1007/s10853-019-03450-7 [72] LI L, LIU S Q, LIU J X. Surface modification of coconut shell based activated carbon for the improvement of hydrophobic VOC removal[J]. Journal of Hazardous Materials, 2011, 192(2): 683-690. doi: 10.1016/j.jhazmat.2011.05.069 [73] DU Y K, CHEN H Y, XU X, et al. Surface modification of biomass derived toluene adsorbent: hierarchically porous characterization and heteroatom doped effect[J]. Microporous and Mesoporous Materials, 2020, 293: 109831. doi: 10.1016/j.micromeso.2019.109831 [74] KIM B, LEE Y R, KIM H Y, et al. Adsorption of volatile organic compounds over MIL-125-NH2[J]. Polyhedron, 2018, 154: 343-349. doi: 10.1016/j.poly.2018.08.010 [75] CHIANG Y C, CHIANG P C, HUANG C P. Effects of pore structure and temperature on VOC adsorption on activated carbon[J]. Carbon, 2001, 39(4): 523-534. doi: 10.1016/S0008-6223(00)00161-5 [76] QIAN Q L, GONG C H, ZHANG Z G, et al. Removal of VOCs by activated carbon microspheres derived from polymer: A comparative study[J]. Adsorption-Journal of the International Adsorption Society, 2015, 21(4): 333-341. doi: 10.1007/s10450-015-9673-9 [77] 余岩松, 吴柳彦, 刘慧娟, 等. 双组分VOCs在吸附树脂上的吸附穿透特性[J]. 中国环境科学, 2020, 40(5): 1982-1990. doi: 10.3969/j.issn.1000-6923.2020.05.015 [78] 龚燕飞. VOCs和水蒸气在活性炭上的吸附平衡研究[D]. 西安: 西安建筑科技大学, 2010. [79] 贾李娟, 原海燕, 王哲, 等. 汽油油气中典型非极性VOCs的吸附特性及竞争因素[J]. 安全与环境学报, 2020, 20(2): 632-638. [80] ELWIN H S, TEE J J, PARKIN I P, et al. Adsorption of volatile organic compounds by industrial porous materials: Impact of relative humidity[J]. Microporous and Mesoporous Materials, 2020, 298: 110090. doi: 10.1016/j.micromeso.2020.110090 [81] LI X Q, ZHANG L, YANG Z Q, et al. Hydrophobic modified activated carbon using PDMS for the adsorption of VOCs in humid condition[J]. Separation and Purification Technology, 2020, 239: 116517. doi: 10.1016/j.seppur.2020.116517 [82] 何俊倩, 蒋康, 周瑛, 等. 硅胶表面TEOS疏水化改性及吸附VOCs特性[J]. 中国环境科学, 2020, 40(2): 600-608. doi: 10.3969/j.issn.1000-6923.2020.02.016 [83] BAL'ZHINIMAEV B S, PAUKSHTIS E A, TOKTAREV A V, et al. Effect of water on toluene adsorption over high silica zeolites[J]. Microporous and Mesoporous Materials, 2019, 277: 70-77. doi: 10.1016/j.micromeso.2018.10.023 [84] 冯勇超, 于庆君, 易红宏, 等. MFI型分子筛在VOCs去除领域的研究进展[J]. 材料导报, 2020, 34(17): 17089-17098. doi: 10.11896/cldb.19110003 [85] LEE D G, KIM J H, LEE C H. Adsorption and thermal regeneration of acetone and toluene vapors in dealuminated Y-zeolite bed[J]. Separation and Purification Technology, 2011, 77(3): 312-324. doi: 10.1016/j.seppur.2010.12.022 [86] 左宋林, 张杰, 刘军利, 等. 活性炭上挥发性有机化合物的真空脱附[J]. 林产化学与工业, 2017, 37(6): 19-27. doi: 10.3969/j.issn.0253-2417.2017.06.003 [87] SALVADOR F, MARTIN-SANCHEZ N, SANCHES-HERNANDEZ R, et al. Regeneration of carbonaceous adsorbents. Part I: Thermal regeneration[J]. Microporous and Mesoporous Materials, 2015, 202: 259-276. doi: 10.1016/j.micromeso.2014.02.045 [88] 杨宇轩, 杜昭, 刘倩. 4种分子筛对VOCs静态吸附与脱附性能研究[J]. 应用化工, 2019, 48(12): 2930-2932. [89] FAYAZ M, SHARIATY P, ATKINSON J D, et al. Using microwave heating to improve the desorption efficiency of high molecular weight VOC from beaded activated carbon[J]. Environmental Science and Technology, 2015, 49(7): 4536-4542. doi: 10.1021/es505953c [90] 刘倩, 杜昭, 张美然. 分子筛吸附VOCs与微波脱附性能研究[J]. 河北科技大学学报, 2020, 41(2): 164-171. doi: 10.7535/hbkd.2020yx02006 [91] ZHANG X Y, GAO B, FANG J, et al. Chemically activated hydrochar as an effective adsorbent for volatile organic compounds (VOCs)[J]. Chemosphere, 2019, 218: 680-686. doi: 10.1016/j.chemosphere.2018.11.144 [92] 周燕芳. 分子筛VOCs吸附性能及其工业化应用研究[D]. 杭州: 浙江大学, 2019. [93] ZHU J X, ZHANG P, WANG Y B, et al. Effect of acid activation of palygorskite on their toluene adsorption behaviors[J]. Applied Clay Science, 2018, 159: 60-67. doi: 10.1016/j.clay.2017.07.019 [94] SHAH I K, PRE P, ALAPPAT B J, et al. Effect of thermal regeneration of spent activated carbon on volatile organic compound adsorption performances[J]. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(4): 1733-1738. doi: 10.1016/j.jtice.2014.01.006