-
城镇污水处理厂站提标改造中多采用移动床生物膜反应器(moving bed biofilm reactor,MBBR)及膜生物反应器(membrane bio-reactor,MBR)等工艺[1-2]。这些工艺存在一次性投资大、原生化池改造难度大、后期运行能耗大、费用高等问题[3-4]。近年来,膜曝气生物膜反应器(membrane aerated biofilm reactor,MABR)工艺以其对高氨氮进水处理性能高、曝气效率高和电耗低的特点,逐步在污水处理项目中受到关注[5-6]。MABR工艺与传统活性污泥系统相比,能耗可降低75%以上,在降低运行成本方面有较大优势[7]。目前,MABR工艺在一体化分散式污水处理装置中应用较多,在河道整治项目中也有应用,但在污水处理厂站提标改造中却应用较少[8-11]。
本文结合MABR工艺在北方地区某污水处理站提标改造工程中的应用,重点阐述了MABR系统的工艺特点、设备配置和设计参数,对调试运行期间主要污染物的处理效果进行了验证,同时亦对该工艺的投资和运行费用进行了分析,以期为后续该工艺在类似工程项目的应用提供参考。
MABR工艺在污水处理站提标改造中的应用
Application of MABR in upgrading and reconstruction of a wastwater treatment station
-
摘要: 采用MABR膜曝气生物膜工艺对北方地区某污水处理站进行了改造,通过在原CAST工艺中增加MABR膜组件,并新建二沉池,从而实现对原生化系统的升级改造;同时,新建了高密池和V型滤池深度处理系统,以控制出水水质。MABR膜曝气生物膜工艺的改造仅新增了曝气膜组件,无需在原生化池内新增设备和土建,且膜曝气效率高、能耗低,无需新增加鼓风机,一次性投资约为850 元·m−3,改造工期约15 d,具有改造工期短和运行成本低的优势。改造后,MABR膜曝气生物膜反应器的氨氮进水均值为39 mg·L−1,出水均值为3 mg·L−1,平均去除率为92 %;TN进水均值为63 mg·L−1,出水均值为11 mg·L−1,平均去除率为83 %;TP进水均值为7.5 mg·L−1,出水均值为0.9 mg·L−1,平均去除率为88 %;COD进水均值为367 mg·L−1,出水均值为35 mg·L−1。此外,结合后续的深度处理段,通过化学除磷可保持污水处理站出水TP低于0.4 mg·L−1。改造后,污水处理站出水水质可稳定达到《城镇污水处理厂污染物排放标准》(GB 18918-2002)一级A标准。Abstract: MABR membrane aeration biofilm reactor process was adopted for the reconstruction of a sewage treatment station in North China. MABR membrane components were added to the original CAST process and a new secondary sedimentation tank was built to reconstruct the original biochemical system. In the meanwhile, an advanced treatment system with new high-density tanks and V-shaped filters were built to ensure the quality of the final effluent. In the establishment of the MABR membrane aeration biofilm reactor process, only new aeration membrane components were added and no new equipment and civil works were needed in the original biochemical tank. No new blowers were needed due to the high aeration efficiency and low energy consumption of the biofilm system. The one-off investment is about 850 yuan·m−3 and the reconstruction period was about 15 days, indicating its advantages of short reconstruction period and low operational cost. For the new membrane aeration biofilm reactor process, the mean value of ammonia nitrogen in the inflow was 39 mg·L−1 and its mean value in the effluent was 3 mg·L−1, i.e. the average removal rate was 92%. The mean value of total nitrogen (TN) in the inflow was 63 mg·L−1 and the mean value in the effluent was 11 mg·L−1, making an average removal rate of 83%. The mean value of total phosphorus (TP) in the inflow was 7.5 mg·L−1 and the mean value in the effluent was 0.9 mg·L−1, thus the average removal rate was 88%. The TP concentration in the effluent could be kept below 0.4 mg·L−1 by chemical phosphorus removal by the follow-up advanced treatment section. The mean value of COD in the inflow was 367 mg·L−1 and the mean value of effluent was 35 mg·L−1, i.e. the average removal rate was 90%. After the reconstruction of the treatment process, the effluent quality of the sewage treatment station stably reached the Class 1A level of tHe Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB 18918-2002).
-
Key words:
- MABR /
- membrane aeration /
- biofilm /
- high ammonia nitrogen /
- upgrade and reconstruction
-
表 1 改造前进出水水质
Table 1. Influent and effluent quality before the upgrade
mg·L−1 检测水样 COD 氨氮 TN TP SS 进水水样 330 48 65 8 160 出水水样 83 26.8 29.2 5.5 14 表 2 升级改造设计进出水水质
Table 2. Design influent and effluent quality for the upgrade and reconstruction
mg·L−1 检测水样 COD BOD5 氨氮 TN TP SS 进水水样 400 250 50 70 8 200 出水水样 50 10 5 15 0.5 10 表 3 MABR主体工艺平稳运行期间进出水水质
Table 3. Influent and effluent quality during stable operation of the MABR main process
mg·L−1 检测水样 COD 氨氮 TN TP 进水水样 367 39 63 7.5 出水水样 35 3 11 0.9 -
[1] 刘亦凡, 陈涛, 李军. 中国城镇污水处理厂提标改造工艺及运行案例[J]. 中国给水排水, 2016, 32(16): 36-41. [2] 路晖, 辛涛, 吴迪, 等. MBBR工艺在污水处理厂提量增效中的应用[J]. 中国给水排水, 2019, 35(4): 100-105. [3] 杨敏, 乔武伟, 孙永利, 等. 污水处理厂提标改造前后能耗对比与节能潜力分析[J]. 给水排水, 2012, 48(4): 48-50. doi: 10.3969/j.issn.1002-8471.2012.04.011 [4] 郝晓地, 陈峤, 李季, 等. MBR工艺全球应用现状及趋势分析[J]. 中国给水排水, 2018, 34(20): 7-12. [5] 李玫, 李保安, 兰美超, 等. 新型MABR生物脱氮过程研究进展[J]. 膜科学与技术, 2020, 40(1): 260-265. [6] 郭冀峰, 罗崇莉, 郭娉, 等. 高效脱氮菌增强膜曝气生物反应器处理市政污水[J]. 环境工程学报, 2017, 11(6): 3493-3498. doi: 10.12030/j.cjee.201609035 [7] 张杨, 李庭刚, 强志民, 等. 膜曝气生物膜反应器研究进展[J]. 环境科学学报, 2011, 31(6): 1133-1143. [8] 许建耘. OxyMem公司废水处理新技术MABR走向工业化[J]. 石油炼制与化工, 2016, 47(9): 92. [9] 焦玉佩, 李意, 刘启明, 等. 膜曝气生物反应器对受污染地表水的处理效果[J]. 环境工程学报, 2017, 11(1): 85-92. doi: 10.12030/j.cjee.201508131 [10] 李浩, 李鹏, 李波, 等. MABR用于城市景观河道水体修复的研究[J]. 膜科学与技术, 2016, 36(6): 101-107. [11] 陈文华, 潘超群, 厉雄峰, 等. MABR技术在农村生活污水处理上的应用[J]. 水处理技术, 2019, 45(5): 126-128. [12] 李意, 张凯松. MABR处理二级出水深度脱氮的中试研究[J]. 工业水处理, 2018, 38(1): 35-38. doi: 10.11894/1005-829x.2018.38(1).035 [13] 王荣昌, 肖帆, 赵建夫. 生物膜厚度对膜曝气生物膜反应器硝化性能的影响[J]. 高校化学工程学报, 2015, 29(1): 151-158. doi: 10.3969/j.issn.1003-9015.2015.01.023