-
随着中国经济的高速发展,大气污染成为全社会所关注的问题。当大气污染物达到一定浓度时,会对人体的呼吸系统造成危害,其中PM2.5表现最为明显[1]。因此,对PM2.5浓度的监测及数据获取就显得尤为重要,但目前常用的监测方式均存在一些不足[2],无法实现高分辨率PM2.5浓度空间分布制图。如实验设计监测成本较高、常规监测在监测站数目上得不到保证、车载移动监测的总体监测时间较短等。监测技术的不足为分析城市PM2.5时空分布特征及污染防治带来很大挑战[3],国内外学者尝试通过构建模型的方法来解决问题。黄仁东等[4]利用统计学与多元回归分析法构建四季最优模型,模拟分析了西安市PM2.5污染特征;孙兆彬等[5]利用CMAQ空气质量模型,模拟出兰州市PM10月均浓度;刘杰等[6]应用MATLAB空间插值算法实现对北京市颗粒污染物的空间分布模拟;陈辉等[7]利用MODIS遥感影像反演AOD的方法建立模型,模拟出京津冀地区PM2.5浓度;此外,扩散模型[8]、神经网络[9]等方法也都被应用于大气污染物浓度模拟。然而,这些方法大都未将影响PM2.5浓度的各种因素考虑进去,会对模型模拟结果的解释能力及精度造成影响。LUR模型综合考虑各种影响因素对PM2.5浓度进行模拟,其精度、解释能力较其他方法更强,已成为模拟大气污染物浓度最有效的方法之一[2,10]。
在欧美、日本等国家,LUR模型已被广泛使用,并在模拟城市PM2.5、NO2和NOx等污染物浓度空间分布方面取得良好效果[3,11-13]。我国学者对LUR模型的应用研究不多,多集中于对特定城市污染物浓度的模拟。陈莉等[14]应用该模型模拟了天津市PM10和NO2浓度的空间分布;吴健生等[15]、焦利民等[16]、汉瑞英等[17]及阳海鸥等[18]分别模拟了重庆市、武汉市、杭州市和南昌市的PM2.5浓度空间分布。然而,由于对区域尺度的PM2.5模拟所需数据量大,以及区域城市间污染传输等难题,只有少数学者开展过区域尺度的相关研究[19-20]。
鉴于区域尺度PM2.5的模拟研究对区域联防联控机制有着重要指导意义,本研究以中国西北部关中平原城市群为例,利用LUR模型模拟其PM2.5浓度,探讨LUR模型在区域尺度上的适用性,并进一步构建最优LUR模型,为该区域PM2.5污染防治提供科学依据,也为城市内部PM2.5浓度空间分布数据获取提供新的思路。
基于LUR模型的PM2.5浓度空间分布监测及分析
Monitoring and analysis of PM2.5 concentration spatial distribution based on LUR model
-
摘要: 为有效解决传统监测技术无法获取城市内部高分辨率PM2.5浓度空间分布情况的问题,基于土地利用回归(land use regression,LUR)模型,以关中平原城市群为例模拟其PM2.5空间分布状况,通过获取研究范围内54个监测站点的PM2.5浓度数据,结合土地利用类型、气象、地形、植被指数、人口密度、交通和污染源等因素,分别建立春、夏、秋、冬及年均5个LUR模型。结果表明:LUR模型调整后各季节及年平均值的R2分别达到0.831 (春)、0.817 (夏)、0.874 (秋)、0.857 (冬)、0.900 (全年平均),5种模型拟合度均较好;采取交叉互验的方法进行了精度检验,显示5种模型的平均精度均达到80.4%,说明LUR模型在模拟关中平原城市群PM2.5浓度空间分布时适用性良好。模拟结果显示,研究区各季节的PM2.5浓度在空间分布上大致相同,呈现出东部高、西部低的明显特征,且空间分布状况受地形因素的影响较大。但在浓度均值的季节变化上则具有夏季低、冬季高的明显差异。本研究结果可为关中平原城市群PM2.5污染防治提供科学依据,亦可为城市内部PM2.5浓度空间分布数据的获取提供新思路。
-
关键词:
- 土地利用回归模型(LUR) /
- PM2.5 /
- 关中平原城市群 /
- 监测方法 /
- 空间分布
Abstract: In order to effectively solve the problem that the traditional monitoring technology cannot obtain the high-resolution spatial distribution of PM2.5 concentration in the city, the Guanzhong plain city group was taken as an example to simulate its PM2.5 spatial distribution status based on the land use regression (LUR) model. The 5 LUR models for spring, summer, autumn, winter and an annual average were built through obtaining PM2.5 concentration data of 54 monitoring stations in the study range and combining the factors such as land use type, meteorology, terrain, vegetation index, population density, traffic and pollution sources. The results showed that the adjusted R2 of each season and annual average of the LUR model reached 0.831 (spring), 0.817 (summer), 0.874 (autumn), 0.857 (winter), 0.90 (annual average), respectively, and better fitting levels occurred for the five models. A cross-examination method was used to carry out the accuracy test, and the average accuracy of the five models reached 80.4%, indicating that the LUR model had good applicability when simulating the spatial distribution of PM2.5 concentration in the Guanzhong plain city group. The simulation results showed that the PM2.5 concentration in each season of the study area was roughly same in spatial distribution with the significant characteristics of high in the east, low in the west, and obvious distribution trends along the altitude. However, there was a clear difference of low in summer and high in winter for the seasonal change of the mean concentration. The results of this study can provide a scientific basis for the prevention and control of PM2.5 pollution in the Guanzhong plain city group, and can also provide new ideas for obtaining the spatial distribution data of PM2.5 concentration within the city. -
表 1 PM2.5浓度与影响因子双变量相关分析结果
Table 1. Result of bivariate correlation analysis between PM2.5 concentration and impact factor
自变量 皮尔森相关系数 P 自变量 皮尔森相关系数 P 耕地面积3 km −0.392** 0.003 人口密度 0.310* 0.021 水体面积3 km −0.404** 0.002 高程 −0.859** 0.000 林地面积5 km −0.647** 0.000 气压 0.840** 0.000 草地面积5 km −0.514** 0.000 温度 0.823** 0.000 建设用地面积5 km 0.789** 0.000 风速 −0.613** 0.000 裸地面积5 km −0.644** 0.000 降水量 −0.378** 0.004 一级道路长度5 km 0.590** 0.000 相对湿度 −0.488** 0.001 二级道路长度5 km 0.412** 0.002 植被指数 −0.415** 0.002 注:**表示在α=0.01下,相关性显著;*表示在α=0.05下,相关性显著。 表 2 LUR模型结果
Table 2. LUR model results
类型 LUR模型 R2 调整后R2 年均 2x5$y = 192.397 - 0.031{x_1} - 1.897{x_2} - 0.533{x_3} + 12.373{x_4} + 0.000$ 0.913 0.900 春季 $y = 153.711 - 0.023{x_1} - 1.515{x_2} - 0.471{x_3} + 14.438{x_4}$ 0.846 0.831 夏季 06x6$y = 189.304 - 0.016{x_1} - 2.381{x_2} - 0.000$ 0.833 0.817 秋季 02x7$y = 98.129 - 0.024{x_1} - 0.485{x_3} - 0.000$ 0.883 0.874 冬季 04x5$y = 215.589 - 0.052{x_1} - 1.549{x_3} + 0.000$ 0.867 0.857 注:y为PM2.5浓度;x1为高程;x2为相对湿度;x3为降水;x4为风速;x5为5 km缓冲区内建设用地面积;x6为5 km缓冲区内草地面积;x7为5 km缓冲区内林地面积。 表 3 模型精度对比
Table 3. Model accuracy comparison
模型名称 模型调整后R2 平均相对误差/% 均方根误差/(μg·m−3) 线性拟合度 年均LUR模型 0.90 9.2 6.79 0.85 春季LUR模型 0.83 12.9 7.85 0.77 夏季LUR模型 0.82 12.1 7.52 0.81 秋季LUR模型 0.87 13.2 7.21 0.79 冬季LUR模型 0.86 12.7 7.48 0.80 -
[1] 魏复盛, 胡伟, 滕恩江, 等. 空气污染对人体健康影响研究的进展[J]. 世界科技研究与发展, 2000(3): 14-18. doi: 10.3969/j.issn.1006-6055.2000.03.004 [2] 吴健生, 谢舞丹, 李嘉诚. 土地利用回归模型在大气污染时空分异研究中的应用[J]. 环境科学, 2016, 37(2): 413-419. [3] HOEK G, BEELEN R, HOOGH K D, et al. A review of land-use regression models to assess spatial variation of outdoor air pollution[J]. Atmospheric Environment, 2008, 42(33): 7561-7578. doi: 10.1016/j.atmosenv.2008.05.057 [4] 黄仁东, 仝慧贤, 刘抗, 等. 西安市PM2.5污染特征及其估测模型[J]. 环境工程学报, 2015, 9(6): 2974-2978. doi: 10.12030/j.cjee.20150671 [5] 孙兆彬, 安兴琴, 陶燕, 等. 基于GIS和大气数值模拟技术评估兰州市PM10的人群暴露水平[J]. 中国环境科学, 2012, 32(10): 1753-1757. doi: 10.3969/j.issn.1000-6923.2012.10.004 [6] 刘杰, 杨鹏, 吕文生. 北京大气颗粒物污染特征及空间分布插值分析[J]. 北京科技大学学报, 2014, 36(9): 1269-1279. [7] 陈辉, 厉青, 王中挺, 等. 利用MODIS资料监测京津冀地区近地面PM2.5方法研究[J]. 气象与环境学报, 2014, 30(5): 27-37. [8] CIOCǍNEA A, DRAGOMIRESCU A. Modular ventilation with twin air curtains for reducing dispersed pollution[J]. Tunnelling and Underground Space Technology, 2013, 37: 180-198. doi: 10.1016/j.tust.2013.03.012 [9] 王敏, 邹滨, 郭宇. 基于BP人工神经网络的城市PM2.5浓度空间预测[J]. 环境污染与防治, 2013, 35(9): 63-66. doi: 10.3969/j.issn.1001-3865.2013.09.013 [10] LEE J H, WU C F, HOEK G, et al. LUR models for particulate matters in the Taipei metropolis with high densities of roads and strong activities of industry, commerce and construction[J]. Science of the Total Environment, 2015, 514: 178-184. doi: 10.1016/j.scitotenv.2015.01.091 [11] MAVKO M E, TANG B, GEORGE L A. A sub-neighborhood scale land use regression model for predicting NO2[J]. Science of the Total Environment, 2008, 398(1/2/3): 68-75. [12] KASHIMA S, YORIFUJI T, TSUDA T, et al. Application of land use regression to regulatory air quality data in Japan[J]. Science of the Total Environment, 2009, 407(8): 3055-3062. doi: 10.1016/j.scitotenv.2008.12.038 [13] TANG R, BLANGIARDO M, GULLIVER J. Using building heights and street configuration to enhance intra urban PM10, NOx, and NO2 land use regression models[J]. Environmental Science&Technology, 2013, 47(20): 11643-11650. [14] 陈莉, 白志鹏, 苏笛, 等. 利用LUR模型模拟天津市大气污染物浓度的空间分布[J]. 中国环境科学, 2009, 29(7): 685-691. doi: 10.3321/j.issn:1000-6923.2009.07.003 [15] 吴健生, 廖星, 彭建, 等. 重庆市PM2.5浓度空间分异模拟及影响因子[J]. 环境科学, 2015, 36(3): 759-767. [16] 焦利民, 许刚, 赵素丽, 等. 基于LUR的武汉市PM2.5浓度空间分布模拟[J]. 武汉大学学报(信息科学版), 2015, 40(8): 1088-1094. [17] 汉瑞英, 陈健, 王彬. 利用LUR模型模拟杭州市PM2.5质量浓度空间分布[J]. 环境科学学报, 2016, 36(9): 3379-3385. [18] 阳海鸥, 陈文波, 梁照凤. LUR模型模拟的南昌市PM2.5浓度与土地利用类型的关系[J]. 农业工程学报, 2017, 33(6): 232-239. doi: 10.11975/j.issn.1002-6819.2017.06.030 [19] 赵佳楠, 徐建华, 卢德彬, 等. 基于RF-LUR模型的PM2.5空间分布模拟: 以长江三角洲地区为例[J]. 地理与地理信息科学, 2018, 34(1): 18-23. doi: 10.3969/j.issn.1672-0504.2018.01.004 [20] 许刚, 焦利民, 肖丰涛, 等. 土地利用回归模型模拟京津冀PM2.5浓度空间分布[J]. 干旱区资源与环境, 2016, 30(10): 116-120. [21] 杨新兴, 尉鹏, 冯丽华. 大气颗粒物PM2.5及其源解析[J]. 前沿科学, 2013, 7(2): 12-19. doi: 10.3969/j.issn.1673-8128.2013.02.003 [22] 徐敬, 丁国安, 颜鹏, 等. 北京地区PM2.5的成分特征及来源分析[J]. 应用气象学报, 2007(5): 645-654. doi: 10.3969/j.issn.1001-7313.2007.05.009 [23] 成海容, 王祖武, 冯家良, 等. 武汉市城区大气PM2.5的碳组分与源解析[J]. 生态环境学报, 2012, 21(9): 1574-1579. doi: 10.3969/j.issn.1674-5906.2012.09.011 [24] 慕建利, 梁生俊, 侯明全, 等. 近40年陕西省扬沙和沙尘暴天气[J]. 西北大学学报(自然科学版), 2005, 35(1): 109-112. [25] 万炜, 魏伟, 钱大文, 等. 土地利用/覆被变化的环境效应研究进展[J]. 福建农林大学学报(自然科学版), 2017, 46(4): 361-372. [26] 李玉玲, 刘红玉, 娄彩荣, 等. 江苏省PM2.5时空变化及土地利用影响研究[J]. 环境科学与技术, 2016, 39(8): 10-15. [27] 李会霞, 史兴民. 西安市PM2.5时空分布特征及气象成因[J]. 生态环境学报, 2016, 25(2): 266-271. [28] 李琛, 刘瑾, 王彦民. 气象因素对西安市城区空气质量的影响[J]. 干旱区资源与环境, 2017, 31(3): 83-88. [29] 段时光, 姜楠, 杨留明, 等. 郑州市冬季大气PM2.5传输路径和潜在源分析[J]. 环境科学, 2019, 40(1): 86-93. [30] 任浦慧, 解静芳, 姜洪进, 等. 太原市大气PM2.5季节传输路径和潜在源分析[J]. 中国环境科学, 2019, 39(8): 3144-3151. doi: 10.3969/j.issn.1000-6923.2019.08.002 [31] 黄光球, 雷哲. 西安市大气颗粒物PM2.5的输送路径和潜在源分析[J]. 云南大学学报(自然科学版), 2019, 41(6): 1191-1200. doi: 10.7540/j.ynu.20190157