-
近年来,高负荷活性污泥法(high-rate activated sludge process, HRAS)在碳源捕获与回收方面展现出巨大的潜力,成为了污水厂实现碳中和、能源自给等目标的热门工艺[1-5]。在优化泥龄(SRT)、水力停留时间(HRT)、溶解氧(DO)等工艺参数和提高HRAS污水碳源捕获率等方面,已取得了阶段性成就。然而,关于HRAS的数学模型的研究较少。有机组分表征是HRAS模型建立的基础,有助于HRAS的设计、运行与优化。
活性污泥法1号模型(activated sludge model number 1, ASM1)在传统活性污泥法(conventional activated sludge process, CAS)中应用最为广泛。CAS为低负荷系统,进水可生物降解有机物(以COD计)污泥负荷为0.2~0.6 g·(g·d)−1,SRT>3 d,HRT通常可达数小时甚至几十小时。而HRAS的SRT通常小于2 d,HRT为0.5~1 h,负荷高达2~10 g·(g·d)−1。因此,HRAS与CAS的微生物和酶系组成、底物降解程度以及生物学过程等存在明显差异,ASM1无法直接应用于HRAS[6]。ASM1将可生物降解的有机物划分为易生物降解有机物(SB)、慢速生物降解有机物(XB)以及微生物(异养菌XH和自养菌XA)。HAIDER等[7]通过对AB系统进出水水质进行分析发现,SB 并不能全部在A段去除,残余的SB只能在B段去除,并认为SB应该分为2种组分。NOGAJ等[8]认为,SB可分为快速生物降解溶解性有机物(SBf)和慢速生物降解溶解性有机物(SBs),两者均可被异养菌直接吸收而不必通过水解过程,不同的是前者的利用速率高于后者。而HENZE[9]认为,溶解性可生物降解组分中存在部分快速水解型有机物(SH),这部分有机物在HRAS系统中不能被异养菌直接利用。HRAS中的异养菌为快速生长型细菌,与污水原水中的异养菌类似,但与CAS系统存在差异[6]。HRAS涉及生物絮凝和细胞贮存,因此,胞外聚合物和细胞贮存物也被划分为模型组分[8]。但是,子过程和模型组分的增加并不一定会提高模型预测的准确性,反而可能导致模型参数辨识难度增加,实用性和拓展性降低。
目前,尚未有针对HRAS有机组分表征的报道,更无标准化组分表征方法的编制。本研究使用氧利用速率(oxygen utilization rate, OUR)测试装置获取污水原水OUR曲线,采用双水解模型对HRAS进行了建模,并对OUR曲线拟合且估计了模型参数;同时,利用灵敏度和共线性分析方法[10-11],解决了模型参数识别问题,从模型组分的角度分析了提高碳源捕获量的工艺参数优化方向,还提出了提高模型参数实践识别能力的方法,为HRAS模型建立提供保障。
高负荷活性污泥法中污水有机组分表征
Characterization of organic fractions in wastewater for high-rate activated sludge process
-
摘要: 污水有机组分表征是高负荷活性污泥法(HRAS)模型建立的基础。针对经典活性污泥1号模型不适用于HRAS这一问题,提出了相应的双水解模型,即将污水有机组分中水解型有机物分为快速水解型与慢速水解型2种,发现两者水解动力学参数具有明显差异。对原水氧利用速率进行参数拟合,通过灵敏度和共线性分析,估计了快速生物降解型有机物、快速水解型有机物、慢速水解型有机物以及异养菌等4种污水有机组分,探讨了污水有机组分与增加HRAS碳源捕获率的关系。结果表明:以上4种有机组分均可被准确识别,共线性指数γK低于经验限值,各组分比例分别为13.9%、11.6%、12.6%和12.8%;从污水组分角度来说,提高HRAS碳源捕获率的3个方向分别为:反应器中的异养菌尽可能将快速生物降解型有机物和快速水解型有机物同化生成细胞物质;避免絮体污泥中的慢速水解型有机物过量水解;抑制异养菌衰减,减少内源呼吸产物的产生。双水解模型对污水有机组分成功表征有助于HRAS的设计、运行及优化。Abstract: Characterization of organic fractions in wastewater is a foundation of modelling high-rate activated sludge process (HRAS). Because of the inapplicatiliby of the classical activated sludge model No. 1 (ASM1) to HRAS, a dual hydrolysis model was proposed to modify ASM1. Hydrolysable organic matter in wastewater was separated to a rapidly hydrolysable type and a slowly hydrolysable type, with distinct hydrolysis kinetic parameters. Parameter fitting was made for the data of oxygen utilization rates. Through sensitivity and collinearity analysis, 4 types of organic fractions in wastewater were estimated: readily degradable organic matter, rapidly hydrolysable organic matter, slowly hydrolysable organic matter and heterotrophs. And the relationship between organic fractions in wastewater and approaches for carbon capture efficiency increase was discussed. The results showed that above 4 types of organic fractions could be accurately identified with the smaller collinearity index γK than the empirical limit value of 20. The proportions of these organic fractions in raw wastewater were 13.9%, 11.6%, 12.6% and 12.8%, respectively. In terms of organic fractions, 3 approaches for improving carbon capture efficiency should be taken into consideration. Firstly, the readily degradable organic matter and rapidly hydrolysable organic matter should be assimilated by heterotrophs as much as possible. Secondly, over-hydrolysis of slowly hydrolysable organic matter captured in sludge flocs need to be prevented. Lastly, the decay process of heterotrophs should be inhibited to reduce endogenous products. The successful characterization of organic fractions in wastewater with dual hydrolysis model is helpful to the design, operation and optimization of HRAS.
-
表 1 双水解模型矩阵
Table 1. Matrix of dual hydrolysis model
子过程序号 子过程 SB/(mg·L−1) SO/(mg·L−1) SH/(mg·L−1) XB/(mg·L−1) XH/(mg·L−1) 子过程速率 1 异养菌的好氧生长 $ - \dfrac{1}{{{Y_{\rm{H}}}}}$ $ - \dfrac{{1 - {Y_{\rm{H}}}}}{{{Y_{\rm{H}}}}}$ 1 ${\mu^{}_{\rm{H} } }\dfrac{ { {S_{\rm{B} } } }}{ { {K_{ {\rm{1} } } } + {S_{\rm{B} } } }}{X_{\rm{H} } }$ 2 快速水解型
有机物的水解1 −1 ${k_{ {\rm{1} } } }\dfrac{ { { {{S_{\rm{H} } } }/{ {X_{\rm{H} } } } } } }{ { {K_{ {\rm{2} } } } + { { {S_{\rm{H} } } }/{ {X_{\rm{H} } } } } } }{X_{\rm{H} } }$ 3 慢速水解型
有机物的水解1 −1 ${k_{ {\rm{2} } } }\dfrac{ { {X_{\rm{B} } }{\rm{/} }{X_{\rm{H} } } }}{ { {K_{ {\rm{3} } } } + {X_{\rm{B} } }{\rm{/} }{X_{\rm{H} } } }}{X_{\rm{H} } }$ 4 异养菌的衰减 −(1 − fE) −1 ${b_{\rm{H}}}{X_{\rm{H}}}$ 注:μH为异养菌比生长速率,d−1;K1为SB利用半饱和系数,mg·L−1;bH为异养菌衰减常数,d−1;k1为SH水解速率常数,d−1;K2为SH水解半饱和系数;k2为XB水解速率常数,d−1;K3为XB水解半饱和系数,mg·L−1;YH为异养菌产率系数;fE为内源呼吸残留比;氧气SO的COD当量为负值。 表 2 污水中有机组分的表征结果(95%置信区间)
Table 2. Results of characterization of organic fractions in wastewater (95% confidence interval)
序号 CODT/(mg·L−1) SB0/(mg·L−1) SH0/(mg·L−1) XB0/(mg·L−1) XH0/(mg·L−1) γK 1 933 178.1±0.2 110.6±0.2 86.6±0.1 98.9±0.1 17.8 2 1 178 186.7±0.1 117.6±0.2 127.1±0.2 47.3±0.04 15.6 3 1 404 79.9±0.2 55.1±0.2 57.3±0.1 104.6±0.2 10.3 4 1 015 75.6±0.2 64.1±0.1 86.4±0.3 40.8±0.1 8.95 5 502 91.0±0.0 86.9±0.0 105.8±0.0 64.7±0.0 15.4 6 560 122.7±0.9 90.6±0.5 120±0.8 63.8±0.7 10.5 7 633 81.0±0.2 79.7±0.1 75.0±0.2 82.0±0.2 8.57 8 291 29.6±0.1 41.2±0.0 41.3±0.1 112.7±0.4 9.98 9 291 4.12±54.84 20.7±300.0 328.3±18 988.8 434.4±19 140.0 1 016 注:CODT为进水中总有机物浓度(以COD计);置信区间中0.0表示该值<0.1。 -
[1] JIMENEZ J, MILLER M, BOTT C, et al. High-rate activated sludge system for carbon management-Evaluation of crucial process mechanisms and design parameters[J]. Water Research, 2015, 87: 476-482. doi: 10.1016/j.watres.2015.07.032 [2] MEERBURG F A, BOON N, VAN WINCKEL T, et al. Live fast, die young: optimizing retention times in high-rate contact stabilization for maximal recovery of organics from wastewater[J]. Environmental Science & Technology, 2016, 50(17): 9781-9790. [3] AKANYETI I, TEMMINK H, REMY M, et al. Feasibility of bioflocculation in a high-loaded membrane bioreactor for improved energy recovery from sewage[J]. Water Science & Technology, 2010, 61(6): 1433-9. [4] 刘智晓. 未来污水处理能源自给新途径: 碳源捕获及碳源改向[J]. 中国给水排水, 2017, 33(8): 43-52. [5] ALLOUL A, GANIGUE R, SPILLER M, et al. Capture-ferment-upgrade: A three-step approach for the valorization of sewage organics as commodities[J]. Environmental Science & Technology, 2018, 52(12): 6729-6742. [6] HENZE M, GUJER W, VAN LOOSDRECHT M C M, et al. Activated Sludge Models ASM1, ASM2, ASM2d and ASM3[M]. IWA Publishing, 2000. [7] HAIDER S, SVARDAL K, VANROLLEGHEM P A, et al. The effect of low sludge age on wastewater fractionation (SS, SI)[J]. Water Science & Technology, 2003, 47(11): 203-209. [8] NOGAJ T M, RANDALL A A, JIMENEZ J A, et al. Mathematical modeling of the high rate activated sludge system: Optimizing the COD∶N ratio in the process effluent[C]//Water Environment Federation. Proceedings of the Water Environment Federation, 2014: 913-926. [9] HENZE M. Characterization of wastewater for modelling of activated sludge processes[J]. Water Science and Technology, 1992, 25: 1-15. doi: 10.2166/wst.1992.0110 [10] DOCHAIN D, VANROLLEGHEM P A, VAN DAELE M. Structural identifiability of biokinetic models of activated sludge respiration[J]. Water Research, 1995, 29(11): 2571-2578. doi: 10.1016/0043-1354(95)00106-U [11] VANROLLEGHEM P A, DAELE M V, DOCHAIN D. Practical identifiability of a biokinetic model of activated sludge respiration[J]. Water Research, 1995, 29(11): 2561-2570. doi: 10.1016/0043-1354(95)00105-T [12] MATHIEU S, ETIENNE P. Estimation of wastewater biodegradable COD fractions by combining respirometric experiments in various S0/X0 ratios[J]. Water Research, 2000, 34(4): 1233-1246. doi: 10.1016/S0043-1354(99)00241-9 [13] LOOSDRECHT M C M V, NIELSEN P H, LOPEZ-VAZQUEZ C M, et al. Experimental Methods in Wastewater Treatment[M].London, UK: IWA Publishing, 2016. [14] SPANJERS H, VANROLLEGHEM P, OLSSON G, et al. Respirometry in control of the activated sludge process[J]. Water Science & Technology, 1998, 34(3/4): 117-126. [15] BRUN R, KüHNI M, SIEGRIST H, et al. Practical identifiability of ASM2d parameters-systematic selection and tuning of parameter subsets[J]. Water Research, 2002, 36(16): 4113-4127. doi: 10.1016/S0043-1354(02)00104-5 [16] SIN G, MEYER A S, GERNAEY K V. Assessing reliability of cellulose hydrolysis models to support biofuel process design: Identifiability and uncertainty analysis[J]. Computers & Chemical Engineering, 2010, 34(9): 1385-1392. [17] SIN G, VANROLLEGHEM P A. Extensions to modeling aerobic carbon degradation using combined respirometric: Titrimetric measurements in view of activated sludge model calibration[J]. Water Research, 2007, 41(15): 3345-3358. doi: 10.1016/j.watres.2007.03.029 [18] HOCAOGLU S M, INSEL G, COKGOR E U, et al. COD fractionation and biodegradation kinetics of segregated domestic wastewater: Black and grey water fractions[J]. Journal of Chemical Technology & Biotechnology, 2010, 85(9): 1241-1249. [19] KAPPELER J, GUJER W. Estimation of kinetic parameters of heterotrophic biomass under aerobic conditions and characterization of wastewater for activated sludge modelling[J]. Water Science and Technology, 1992, 25(6): 125-139. doi: 10.2166/wst.1992.0118 [20] MEERBURG F A, BOON N, VAN WINCKEL T, et al. Toward energy-neutral wastewater treatment: A high-rate contact stabilization process to maximally recover sewage organics[J]. Bioresource Technology, 2015, 179: 373-381. doi: 10.1016/j.biortech.2014.12.018 [21] TCHOBANOGLOUS G, STENSEL H D, TSUCHIHASHI R, et al. Wastewater Engineering: Treatment and Resource Recovery[M]. New York: McGraw-Hill Education, 2014. [22] IKUMI D S, HARDING T H, EKAMA G A. Biodegradability of wastewater and activated sludge organics in anaerobic digestion[J]. Water Research, 2014, 56: 267-279. doi: 10.1016/j.watres.2014.02.008 [23] EKAMA G A, SOTEMANN S W, WENTZEL M C. Biodegradability of activated sludge organics under anaerobic conditions[J]. Water Research, 2007, 41(1): 244-252. doi: 10.1016/j.watres.2006.08.014