-
短程硝化技术较现行污水处理厂普遍应用的传统全程硝化技术具有显著的经济优势,对于活性污泥工艺处理普遍面临的低碳氮比(COD/N)污水具有可持续发展意义[1-2]。短程硝化即通过氨氧化细菌(AOB)的作用将氨氮氧化为亚硝酸盐,由亚硝酸盐氧化细菌(NOB)将亚硝酸盐进一步氧化为硝酸盐,通过以上2步过程完成全程硝化[2]。有研究表明,通过调节运行参数可以实现亚硝酸盐积累,如采用较低的溶解氧(DO)、高温、调节pH从而实现较高的游离氨(FA)或游离亚硝酸(FNA)浓度等。李培根等[3]在DO约0.3 mg·L−1,pH为8.0的条件下,采用序批式反应器(SBR)成功实现短程硝化。ZHENG等[4]将DO、温度和pH分别控制在0.4~0.6 mg·L−1、35 ℃和8~8.2,在无纺布生物转盘反应器内实现同步短程硝化、厌氧氨氧化和反硝化过程。SAUDER等[5]的研究表明,在21~33 ℃时,温度升高可提高亚硝酸盐积累的程度。此外,DURAN等[6]采用完全混合反应器(CSTR)进行了短程硝化,在pH为7.1~8.5进行调节,控制FA低于10 mg·L−1、FNA高于0.2 mg·L−1。然而实际中的低温地区或时节的大型污水处理厂若长期通过加热设备实现温度控制,或通过投加碱以提高pH所需费用较高,控制DO的实现亚硝酸盐积累具有实际可行性。虽然已证实采用低DO可以实现亚硝酸盐积累,但是氨氮氧化速率随着DO的降低也会随之下降[7-9]。
活性污泥生物污水处理工艺中功能菌的比例直接影响生物降解速率[7, 10]。著名的生物添加强化技术(BABE)正是基于此原理,通过在污水处理工艺的侧流反应器培养硝化细菌,将侧流中富有硝化细菌的污泥回流于主流工艺,从而强化主流工艺的硝化能力[11-12]。此外,已有研究表明,载体挂膜、细胞固定化等方式也可以实现增加反应器内的目标功能菌的目标。ANTILEO等[9]采用内有纺织材料载体的生物转盘反应器,将DO控制1.0 mg·L−1以下,通过pH控制以及在氨氮氧化完成时停止曝气的运行策略,实现AOB的优势增长,长期实验结果表明亚硝酸盐积累率稳定维持在84%~88%。徐浩等[13]的研究结果表明,添加立体弹性填料的序批式生物膜反应器(SBBR)利于AOB菌种的富集,亚硝酸盐积累率达到90%以上。DANIEL等[14]证实了固定化载体利于AOB菌体附着其上,促进亚硝酸盐积累的形成。因此,为加速在低DO条件下实现亚硝酸盐积累的同时实现较高的氨氮氧化速率,向主流工艺中投加AOB,以实现其相对于NOB的菌群优势,从而强化氨氮氧化至亚硝酸盐的能力,具有重要的现实意义。
在水污染控制领域,生物反应器通常采用连续流或间歇运行方式。已有研究[15-16]采用此2种运行方式,在30 ℃左右的温度条件下,实现了AOB的富集培养,历时1个月至数月。本研究在常温(20 ℃)条件下,采用底物流加-间歇运行方式进行AOB富集培养,探讨了pH、FA、FNA、DO等因素对其的影响,并对富集过程中AOB进行了定性和定量分析,为常温快速富集高纯度的AOB提供参考。
底物流加-间歇运行方式下氨氧化细菌富集培养的效果及影响因素分析
Analysis on the effect of ammonia-oxidizing bacteria enrichment and its influence factors under the substrate continuous feeding in a sequencing batch reactor
-
摘要: 富集培养氨氧化细菌(AOB)可为污水处理工艺提高氨氮氧化速率、促进亚硝酸盐积累提供物质基础。在(20±2) ℃下,采用底物流加-间歇运行方式进行氨氧化细菌富集培养,重点考察了游离氨(FA)、游离亚硝酸(FNA)、溶解氧(DO)等因素的影响,并对富集前后活性污泥样品中的AOB进行了定性定量分析。结果表明:第15天左右AOB增殖进入稳定生长期,比氨氮氧化速率由接种时的4.45 mg·(g·h)−1升高至57.22 mg·(g·h)−1;通过pH、底物流加速率和实际反应速率关系的联合控制,可以实现整个反应过程中FA和FNA在预期范围内波动;即使在极低的DO条件下,高纯度的AOB也可进行氨氮氧化。高通量测序结果表明,体系内Nitrosomonas属的AOB大幅度增长,可由0.23%上升至54.18%,亚硝酸盐氧化细菌(NOB)的生长得到了有效抑制,培养结束时仅为0.12%。荧光定量PCR对AOB功能基因amoA的绝对含量结果表明,富集前后平均拷贝数由2.67×105 copies·g−1升至最大,可达9.67×109 copies·g−1,AOB成为活性污泥中的优势菌。本研究结果可为常温条件下快速富集AOB提供参考。Abstract: The enriched ammonia-oxidizing bacteria (AOB) was added into wastewater treatment systems, which could provide the foundation for promoting the ammonia oxidation and nitrite accumulation. AOB was enriched in a sequencing batch reactor (SBR) with continuous feeding of ammonia at the temperature of (20±2) °C, and the effects of free ammonia (FA), free nitrous acid (FNA) and dissolved oxygen (DO) were evaluated, and the identification and quantification analysis of AOB was also performed in the sludge samples before and after the enrichment. The results indicated that the AOB reached the growth stability period around day 15, and the specific ammonia oxidation rate increased from 4.45 mg·(g·h)−1 at inoculation stage to a maximum level of 57.22 mg·(g·h)−1. The expected FA and FNA concentrations could be controlled systematically with the regulation on pH and the relationship between the substrate continuous feeding rate and the real reaction rate. Even at very low DO conditions, ammonia could be oxidized by AOB with high ratio. High-throughput sequencing demonstrated that AOB affiliated to Nitrosomonas was highly enriched, and increased from 0.23% to 54.18%. The nitrite-oxidizing bacteria (NOB) growth was inhibited, and only remained 0.12% at the end of cultivation. The copy number of gene amoA for AOB increased from 2.67×105 copies·g−1 to a maximum value of 9.67×109 copies·g−1 during the enrichment period by quantitative real-time fluorescence polymerase chain reaction (qPCR), and AOB became the predominated bacteria in the cultivated sludge. This work can guide rapid enrichment of AOB at normal temperature.
-
表 1 amoA基因平均拷贝数
Table 1. Average copy number of gene amoA for AOB
样品 平均Ct值 平均拷贝数/(copies·g−1) 接种污泥 32.238 64 17.799 9 第9天污泥 21.602 48 28 254.01 第15天污泥 17.185 25 644 733.5 第18天污泥 17.511 69 486 618 -
[1] HOSSEINLOU D, SARTAJ M, DELATOLLA R. Simultaneous anaerobic oxidation/partial nitrification-denitrification for cost-effective and efficient removal of organic carbon and nitrogen from highly polluted streams[J]. Environmental Technology, 2019, 40(16): 2114-2126. doi: 10.1080/09593330.2018.1438522 [2] RUIZ G, JEISON D, CHAMY R. Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration[J]. Water Research, 2003, 37(6): 1371-1377. doi: 10.1016/S0043-1354(02)00475-X [3] 李培根, 王宇佳, 胡筱敏. 低DO与化学控制相结合的半亚硝化运行[J]. 环境工程学报, 2017, 11(4): 2170-2176. doi: 10.12030/j.cjee.201601050 [4] ZHENG Z M, HUANG S, BIAN W, et al. Enhanced nitrogen removal of the simultaneous partial nitrification, anammox and denitrification (SNAD) biofilm reactor for treating mainstream wastewater under low dissolved oxygen (DO) concentration[J]. Bioresource Technology, 2019, 283: 213-220. doi: 10.1016/j.biortech.2019.01.148 [5] SAUDER L A, ALBERTSEN M, ENGEL K, et al. Cultivation and characterization of Candidatus Nitrosocosmicus exaquare, an ammonia-oxidizing archaeon from a municipal wastewater treatment system[J]. ISME Journal, 2017, 11(5): 1142-1157. doi: 10.1038/ismej.2016.192 [6] DURAN U, VAL DEL RIO A, CAMPOS J L, et al. Enhanced ammonia removal at room temperature by pH controlled partial nitrification and subsequent anaerobic ammonium oxidation[J]. Environmental Technology, 2014, 35(4): 383-390. doi: 10.1080/09593330.2013.829110 [7] YAN J, HU Y Y. Partial nitrification to nitrite for treating ammonium-rich organic wastewater by immobilized biomass system[J]. Bioresource Technology, 2009, 100(8): 2341-2347. doi: 10.1016/j.biortech.2008.11.038 [8] WANG L K, ZENG G M, YANG Z H, et al. Operation of partial nitrification to nitrite of landfill leachate and its performance with respect to different oxygen conditions[J]. Biochemical Engineering Journal, 2014, 87: 62-68. doi: 10.1016/j.bej.2014.03.013 [9] ANTILEO C, WERNER A, CIUDAD G, et al. Novel operational strategy for partial nitrification to nitrite in a sequencing batch rotating disk reactor[J]. Biochemical Engineering Journal, 2006, 32(2): 69-78. doi: 10.1016/j.bej.2006.09.003 [10] JOHNSON D R, LEE T K, PARK J, et al. The functional and taxonomic richness of wastewater treatment plant microbial communities are associated with each other and with ambient nitrogen and carbon availability[J]. Environmental Microbiology, 2015, 17(12): 4851-4860. doi: 10.1111/1462-2920.12429 [11] SALEM S, BERENDS D H J G, HEIJNEN J, et al. Bio-augmentation by nitrification with return sludge[J]. Water Research, 2003, 37(8): 1794-1804. doi: 10.1016/S0043-1354(02)00550-X [12] BERENDS D, SALEM S, VAN DER ROEST H F, et al. Boosting nitrification with the BABE technology[J]. Water Science and Technology, 2005, 52(4): 63-70. doi: 10.2166/wst.2005.0088 [13] 徐浩, 李捷, 罗凡, 等. 低C/N比城市污水短程硝化特性及微生物种群分布[J]. 环境工程学报, 2017, 11(3): 1477-1481. doi: 10.12030/j.cjee.201511206 [14] DANIEL L M, POZZI E, FORESTI E, et al. Removal of ammonium via simultaneous nitrification-denitrification nitrite-shortcut in a single packed-bed batch reactor[J]. Bioresource Technology, 2009, 100(3): 1100-1107. doi: 10.1016/j.biortech.2008.08.003 [15] TERADA A, SUGAWARA S, YAMAMOTO T, et al. Physiological characteristics of predominant ammonia-oxidizing bacteria enriched from bioreactors with different influent supply regimes[J]. Biochemical Engineering Journal, 2013, 79: 153-161. doi: 10.1016/j.bej.2013.07.012 [16] 章正勇, 陈旭, 安立超. 氨氧化细菌富集培养的实验研究[J]. 化学与生物工程, 2007, 24(7): 63-67. doi: 10.3969/j.issn.1672-5425.2007.07.020 [17] YAO R D, YANG H, YU M Y, et al. Enrichment of ammonia-oxidizing bacteria and microbial diversity analysis by high-throughput sequencing[J]. Journal of Residuals Science and Technology, 2017, 14(1): 77-84. doi: 10.12783/issn.1544-8053/14/1/10 [18] 姚仁达. 氨氧化和硝化细菌菌群筛选与富集培养及其固定化研究[D]. 北京: 北京工业大学, 2017. [19] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [20] ANTHONISEN A C, LOEHR R C, PRAKASAM T B S, et al. Inhibition of nitrification by ammonia and nitrous-acid[J]. Journal Water Pollution Control Federation, 1976, 48(5): 835-852. [21] YAO R D, YANG H, YU M Y, et al. Enrichment of nitrifying bacteria and microbial diversity analysis by high-throughput sequencing[J]. RSC Advances, 2016, 6(115): 113959-113966. doi: 10.1039/C6RA24213H [22] VADIVELU V M, KELLER J, YUAN Z. Free ammonia and free nitrous acid inhibition on the anabolic and catabolic processes of Nitrosomonas and Nitrobacter[J]. Water Science and Technology, 2007, 56(7): 89-97. doi: 10.2166/wst.2007.612 [23] BAE W, BAEK S, CHUNG J, et al. Optimal operational factors for nitrite accumulation in batch reactors[J]. Biodegradation, 2001, 12(5): 359-366. doi: 10.1023/A:1014308229656 [24] VADIVELU V M, KELLER J, YUAN Z. Effect of free ammonia and free nitrous acid concentration on the anabolic and catabolic processes of an enriched Nitrosomonas culture[J]. Biotechnology and Bioengineering, 2006, 95(5): 830-839. doi: 10.1002/bit.21018 [25] 王淑莹, 李论, 李凌云, 等. 快速启动短程硝化过程起始pH值对亚硝酸盐积累的影响[J]. 北京工业大学学报, 2011, 37(7): 1067-1072. [26] 孙振世, 柯强, 陈英旭. SBR生物脱氮机理及其影响因素[J]. 中国沼气, 2001, 19(2): 16-19. doi: 10.3969/j.issn.1000-1166.2001.02.004 [27] WANG J L, YANG N. Partial nitrification under limited dissolved oxygen conditions[J]. Process Biochemistry, 2004, 39(10): 1223-1229. doi: 10.1016/S0032-9592(03)00249-8 [28] SIRIPONG S, RITTMANN B E. Diversity study of nitrifying bacteria in full-scale municipal wastewater treatment plants[J]. Water Research, 2007, 41(5): 1110-1120. doi: 10.1016/j.watres.2006.11.050 [29] WANG X H, WEN X H, CRIDDLE C, et al. Community analysis of ammonia-oxidizing bacteria in activated sludge of eight wastewater treatment systems[J]. Journal of Environmental Sciences, 2010, 22(4): 627-634. doi: 10.1016/S1001-0742(09)60155-8 [30] DAIMS H, NIELSEN J L, NIELSEN P H, et al. In situ characterization of Nitrospira-like nitrite oxidizing bacteria active in wastewater treatment plants[J]. Applied and Environmental Microbiology, 2001, 67(11): 5273-5284. doi: 10.1128/AEM.67.11.5273-5284.2001 [31] 于莉芳, 陈青青, 杨晋, 等. 污泥水富集硝化菌的群落结构及动力学参数研究[J]. 环境科学, 2009, 30(7): 2035-2039. doi: 10.3321/j.issn:0250-3301.2009.07.027 [32] 郑平, 徐向阳, 胡宝兰. 新型生物脱氮理论与技术[M]. 北京: 科学出版社, 2004.