-
近年来,由水体中氨氮超标导致的水体富营养化等问题引起了国内外学者的高度关注[1-2]。现有的氨氮处理方法主要包括折点氯化法[3]、离子交换法[4]和生物法[5]。其中,折点氯化法在实际工程中应用较为普遍,但需要额外的处置单元对余氯进行去除,且容易生成氯代有机物等高毒性副产物;离子交换法对于高浓度氨氮废水的处理效果有限,而生物法在低碳氮比条件下也难以达到理想的脱氮效果。
相比而言,电化学氧化技术具有操控性强、处理效果好和操作简便等特点,有望在含氨氮废水治理方面得到应用[6-7],而高效的电极材料是电化学体系的核心[8]。一方面,可以利用电极材料的直接氧化作用将氨氮氧化为
$ {\rm{NO}}_3^ - $ 、$ {\rm{NO}}_2^ - $ 或N2[9-10];另一方面,也可间接诱导产生氯自由基(Cl·)与富电子基团(如氨氮)发生选择性反应来实现其氧化[11]。前者通常须在较高的电压作用下才能够实现,而后者则有望在低电压下实现氨氮的选择性转化。LI等[12]利用SnO2-CNT阳极产生的H+,将Cl−原位转化成Cl·,后者进一步与氨氮发生选择性催化氧化反应,生成$ {\rm{NO}}_3^ - $ 和N2,生成少量的$ {\rm{NO}}_3^ - $ 副产物,在阴极可被Pd-Cu修饰的泡沫镍材料催化还原为N2。但在该体系中,阳极SnO2-CNT材料的制备过程复杂(需要电吸附、水热和烘干等多道工序),氧化速率较慢(40 min仅能实现65%的氨氮转化率),负载的纳米SnO2材料容易从膜表面脱落,严重影响了电化学体系的稳定性。针对上述问题,本研究采用稳定性更好、氧化能力更强的硼掺杂金刚石(BDD电极)作为阳极[13]。与其他电极材料相比,BDD电极具有优异的理化性质和高达3.5 V的氧化电位,被视为理想的电极材料。目前,已有利用BDD电极处理氨氮废水的报道[14-16],但在相同处理时间内处理效率有限(氨氮的间接转化率仅为70%)。本研究拟采用一种高效的处理模式进行氨氮的选择性降解,可在40 min内实现100%的氨氮转化。本研究还探究了阴极材料、电场强度、电极间距和电解质等参数对氨氮转化效能的影响,并借助电子顺磁共振(EPR)等表征技术,对氨氮的选择性氧化机理进行了解析,可为氨氮废水的高效处理提供潜在高效的可行性方案。
氯自由基介导的BDD电极选择性氧化脱氮
Chlorine radical mediated selective oxidation denitrification by BDD electrode
-
摘要: 为实现氨氮的高效选择性转化,设计了一个氯自由基介导的电化学体系。该电化学体系以稳定性好、氧化能力强的掺硼金刚石(BDD)电极为阳极,以Pd-Cu修饰的泡沫镍材料(Pd-Cu/NF)为阴极,以氯化钠为电解质,对BDD电极选择性电催化氧化性能与机理进行了研究。结果表明:在4.0 V电压下,体系中的Cl−原位可转化成氯自由基(Cl·),Cl·可选择性地将氨氮转化为N2和少量
$ {\rm{NO}}_3^ - $ ,副产物$ {\rm{NO}}_3^ - $ 在Pd-Cu/NF阴极被高效还原为N2;分别探究了阴极材料、电场强度、电极间距、溶液pH和电解质种类对氨氮转化性能的影响。通过电子顺磁共振和自由基捕获实验,证实了Cl·在氨氮转化过程中发挥了重要作用。在最优条件下,可实现40 min内100%的氨氮转化率和25 mg·L−1的N2生成量,以上研究结果可为解决水体中氨氮的污染问题提供参考。Abstract: An electrochemical oxidation system mediated by chlorine radical was designed to achieve the efficient selective transformation of ammonia nitrogen. In the electrochemical system, a boron-doped diamond (BDD) electrode with good stability and strong oxidation ability was used as anode, Pd-Cu-modified nickel foam material (Pd-Cu/NF) and sodium chloride were used as cathode and electrolyte, respectively. The results showed that at a voltage of 4.0 V, Cl− in the system could in situ convert into chlorine radical (Cl·), Cl· could selectively convert ammonia nitrogen into N2 and a small amount of$ {\rm{NO}}_3^ - $ , and the latter one as a by-product could be efficiently reduced to N2 at the Pd-Cu/NF cathode. In addition, the effects of cathode material, electric field intensity, electrode distance, solution pH and electrolyte type on the ammonia nitrogen conversion were studied. Electron paramagnetic resonance and free radical capture experiments confirmed that Cl· played an important role in ammonia nitrogen conversion. Under the optimal conditions, 100% ammonia nitrogen conversion rate and N2 production amount of 25 mg·L−1 could be achieved within 40 min, which can provide a new idea for solving the problem of ammonia nitrogen pollution in waterbody.-
Key words:
- ammonia /
- BDD /
- chlorine radical /
- Pd-Cu/NF /
- electrochemical catalytic oxidation
-
-
[1] KUANG P, NATSUI K, EINAGA Y. Comparison of performance between boron-doped diamond and copper electrodes for selective nitrogen gas formation by the electrochemical reduction of nitrate[J]. Chemosphere, 2018, 210: 524-530. doi: 10.1016/j.chemosphere.2018.07.039 [2] HUANG H, LIU J, ZHANG P, et al. Investigation on the simultaneous removal of fluoride, ammonia nitrogen and phosphate from semiconductor wastewater using chemical precipitation[J]. Chemical Engineering Journal, 2017, 307: 696-706. doi: 10.1016/j.cej.2016.08.134 [3] JORGENSEN T C, WEATHERLEY L R. Ammonia removal from wastewater by ion exchange in the presence of organic contaminants[J]. Water Research, 2003, 37: 1723-1728. doi: 10.1016/S0043-1354(02)00571-7 [4] THOMAS A, DOLLOFF F, STEPHANIE G. Ammonia-nitrogen removal by breakpoint chlorination[J]. Environmental Science & Technology, 1972, 6: 622-628. [5] VIDAL S, ROCHA C, GALVAO H. A comparison of organic and inorganic carbon controls over biological denitrification in aquaria[J]. Chemosphere, 2002, 48: 445-451. doi: 10.1016/S0045-6535(02)00073-5 [6] CHEN L, LEI C, LI Z, et al. Electrochemical activation of sulfate by BDD anode in basic medium for efficient removal of organic pollutants[J]. Chemosphere, 2018, 210: 516-523. doi: 10.1016/j.chemosphere.2018.07.043 [7] 王世平, 冯文侃, 梁咏梅, 等. BDD电化学氧化苯酚及垃圾渗滤液研究[J]. 环境工程, 2013, 31(6): 37-40. doi: 10.11835/j.issn.1000-582X.2013.02.007 [8] PANIZZA M, MARTINEZ-HUITLE C A. Role of electrode materials for the anodic oxidation of a real landfill leachate comparison between Ti-Ru-Sn ternary oxide, PbO2 and boron-doped diamond anode[J]. Chemosphere, 2013, 90: 1455-1460. doi: 10.1016/j.chemosphere.2012.09.006 [9] DU R, CAO S, LI B, et al. Performance and microbial community analysis of a novel DEAMOX based on partial-denitrification and anammox treating ammonia and nitrate wastewaters[J]. Water Research, 2017, 108: 46-56. doi: 10.1016/j.watres.2016.10.051 [10] LAWSON C E, LUCKER S. Complete ammonia oxidation: An important control on nitrification in engineered ecosystems[J]. Current Opinion in Biotechnology, 2018, 50: 158-165. doi: 10.1016/j.copbio.2018.01.015 [11] 陈荣玲, 黄卫民, 何亚鹏, 等. 阴极脱氯协同多孔Ti/BDD电极阳极电催化氧化对氯苯酚[J]. 电化学, 2018, 24(2): 129-136. [12] LI F, PENG X, LIU Y B, et al. A chloride-radical-mediated electrochemical filtration system for rapid and effective transformation of ammonia to nitrogen[J]. Chemosphere, 2019, 229: 383-391. doi: 10.1016/j.chemosphere.2019.04.180 [13] GHAZOUANI M, AKROUT H, BOUSSELMI L. Nitrate and carbon matter removals from real effluents using Si/BDD electrode[J]. Environmental Science and Pollution Research, 2017, 24: 9895-9906. doi: 10.1007/s11356-016-7563-7 [14] 王春荣, 邱县金, 李贵伟, 等. BDD电极去除废水中氨氮的反应机理[J]. 工业水处理, 2015, 35(4): 32-35. doi: 10.11894/1005-829x.2015.35(4).032 [15] GHAZOUANI M, AKROUT H, JELLALI S, et al. Comparative study of electrochemical hybrid systems for the treatment of real wastewaters from agri-food activities[J]. Science of the Total Environment, 2019, 647: 1651-1664. doi: 10.1016/j.scitotenv.2018.08.023 [16] FUDALA-KSIAZEK S, SOBASZEK M, LUCZKIEWICZ A, et al. Influence of the boron doping level on the electrochemical oxidation of raw landfill leachates: Advanced pre-treatment prior to the biological nitrogen removal[J]. Chemical Engineering Journal, 2018, 334: 1074-1084. doi: 10.1016/j.cej.2017.09.196 [17] 苏革, 黄荣芳, 闻立时, 等. 采用热丝CVD法在多种基材上沉积金刚石薄膜[J]. 表面技术, 1998(1): 5-7. [18] ZHANG Y, LI J, BAI J, et al. Exhaustive conversion of inorganic nitrogen to nitrogen gas based on a photoelectro-chlorine cycle reaction and a highly selective nitrogen gas generation cathode[J]. Environmental Science & Technology, 2018, 52: 1413-1420. [19] 伍新驰. Nb/BDD膜电极的电化学性质和对石化废水的处理研究[D]. 广州: 广东工业大学, 2012. [20] MARCIONILIO S, ALVES G M, SILVA R, et al. Influence of the current density on the electrochemical treatment of concentrated 1-butyl-3-methylimidazolium chloride solutions on diamond electrodes[J]. Environmental Science and Pollution Research, 2016, 23: 19084-19095. doi: 10.1007/s11356-016-7105-3 [21] 谢明政, 冯玉杰, 栾鹏, 等. N, S共掺杂纳米TiO2: 水解-溶剂热法合成及可见光催化活性[J]. 无机化学学报, 2014, 30(9): 2081-2086. [22] SUN L Q, WANG Y Y, RAZIQ F, et al. Enhanced photoelectrochemical activities for water oxidation and phenol degradation on WO3 nanoplates by transferring electrons and trapping holes[J]. Scientific Reports, 2017, 7: 1303. doi: 10.1038/s41598-017-01300-7 [23] LI T, JIANG Y, AN X Q, et al. Transformation of humic acid and halogenated byproduct formation in UV-chlorine processes[J]. Water Research, 2016, 102: 421-427. doi: 10.1016/j.watres.2016.06.051 [24] LIN S H, WU C L. Electrochemical removal of nitrite and ammonia for aquaculture[J]. Water Research, 1996, 30: 715-721. doi: 10.1016/0043-1354(95)00208-1