-
随着水体富营养化的加剧和日益严格的排放标准,开发经济、高效、稳定的可持续生物脱氮技术已迫在眉睫。CANON (completely autotrophic nitrogen removal over nitrite)工艺较传统生物脱氮工艺可节约100%的有机碳源,降低约63%的曝气能耗,污泥产量减少约90%,且反应器结构简单、微生物受游离氨(FA)和游离亚硝酸(FNA)毒性小,成为目前最为经济有效的生物脱氮工艺[1],在垃圾渗滤液和污泥消化液这类高氨氮工业废水的脱氮处理中备受青睐[2-3]。CANON颗粒污泥基于好氧、缺氧空间分布和基质传质梯度维持AOB和AMX动态平衡,是实现CANON工艺稳定脱氮的关键[4]。CANON污泥中主要功能菌增殖较慢,如AMX世代时间为10~12 d[5],一旦颗粒污泥中AOB、AMX和亚硝酸盐氧化菌(NOB)等功能微生物的协同与制约作用被破坏,污泥性能恢复调控难度大。
在实际工程应用中,水质变化不可避免,易引起污泥活性抑制和微生物间平衡破坏,导致CANON颗粒污泥工艺运行调试周期长、难度大。如较高的进水氨氮浓度,对AMX和AOB都会有不同程度的抑制。DAPENA-MORA等[6]发现,当初始氨氮质量浓度为350 mg·L−1,AMX菌活性降低50%;李冬等[7]研究表明, 进水氨氮浓度从50 mg·L−1增加到200 mg·L−1后,AOB被抑制,致使亚硝化颗粒污泥胞外聚合物(PN)减少。因此,探索CANON颗粒污泥快速适应进水氨氮浓度提升的调控方法,是本技术工程化应用亟待研究的课题。
本研究以常温存储2个月的自养颗粒污泥为种泥,通过3种调控策略探究了全自养脱氮颗粒污泥快速适应高浓度氨氮的有效调控途径及重要影响因子。其中:策略R1为HRT不变,通过提高氨氮浓度来直接提升氨氮负荷;策略R2为HRT不变,逐级提高氨氮浓度,梯度增加氨氮负荷;策略R3为HRT与氨氮浓度同步,平稳提升氨氮负荷,
不同调控策略对CANON工艺快速适应氨氮浓度提升的影响
Influences of different regulating strategies on the fast adaptation to ammonia nitrogen concentration improvement in CANON process
-
摘要: 针对进水氨氮浓度变化会影响CANON颗粒污泥功能微生物间的协同导致系统不稳定的问题,通过接种常温下贮存2个月的自养颗粒污泥,并采用3种调控策略(维持HRT不变,快速提升氨氮浓度(R1);维持HRT不变,逐级提升氨氮浓度(R2);逐级提升进水氨氮浓度同时调整HRT,以125 mg·L−1为进水氨氮增幅(R3)),分别考察各种调控策略对系统适应275 mg·L−1和400 mg·L-1氨氮浓度的效能影响,探讨调控策略与污泥性能的关系及游离氨(FA)、溶解氧(DO)的影响。结果表明,污泥性能提升期,负荷变化最为平稳的策略R3率先适应进水氨氮浓度的提升,仅44 d内总氮去除负荷可达到3.5 kg·(m3·d)−1;污泥性能成熟期,快速提升负荷的策略R1可缩短适应时间至25 d,总氮去除率稳定在80%以上,去除负荷达到5.3 kg·(m3·d)−1。FA会影响功能微生物活性,策略R1在污泥性能提升期,FA浓度高达16.6~26.7 mg·L−1,一定程度上抑制了好氧氨氧化菌(AOB)和厌氧氨氧化菌(AMX)的活性,导致系统适应期延长。在污泥适应高氨氮负荷过程中,比氨氧化速率(SAOR)和比总氮去除速率(SNRR)逐渐提高,污泥浓度和颗粒粒径逐渐增大。f值(Δ
$ {\rm{NO}}_3^{-}$ -N/ΔTN)可作为DO调节的重要依据,DO与氨氮去除负荷呈良好的正相关性。Abstract: Fluctuations of ammonia nitrogen concentrations in the influent are related to system instability caused by the synergies among functional microbes in granular sludge of the completely autotrophic nitrogen removal over nitrite (CANON) process. In this study, the autotrophic denitrification granular sludge stored at room temperature for 2 months was used as the inoculum. Three control strategies were adopted: rapidly increasing influent ammonia nitrogen concentration (R1) or stepwise increasing influent ammonia nitrogen concentration (R2) at stable HRT, and gradually increasing influent ammonia nitrogen load while adjusting HRT (R3). At the increase of influent ammonia nitrogen concentration by 125 mg·L−1, the effects of three control strategies on the adaption to ammonia nitrogen concentrations of 275 mg·L−1 and 400 mg·L−1 in the CANON process were studied, as well as the relations between various strategies and sludge properties and the effects of free ammonia (FA) and dissolved oxygen (DO). The results show that the strategy of R3 with a stable variation in sludge loading showed the fastest adaptation to the increase of influent ammonia nitrogen concentration during the period of sludge performance improvement, and the total nitrogen removal loading could reach 3.5 kg·(m3·d)−1 within 44 days. In the mature stage of sludge performance, the strategy R1 with rapidly enhancing the influence loading could shorten the adaptation time to 25 days and the total nitrogen removal loading reached 5.3 kg·(m3·d)−1 at the ammonia nitrogen loading of 6.4 kg·(m3·d)−1, and total nitrogen removal rate reached 80%. FA concentration affected the activity of functional microbial. During the sludge performance improvement period, FA concentration of the strategy R1 was as high as 16.6~26.7 mg·L−1, which inhibited the activity of aerobic ammonia oxidizing bacteria (AOB) and anaerobic ammonium oxidation bacteria (AMX) and prolonged system adaptation to some extent. When the sludge was adapted to high ammonia nitrogen loading, specific ammonia oxidation rate (SAOR) and specific nitrogen removal rate (SNRR) gradually increased, and the sludge concentration and particle size gradually increased. The f-value (Δ$ {\rm{NO}}_3^{-}$ -N/ΔTN) was used as an important basis for the DO regulation, and a good positive correlation between DO and the ammonia nitrogen removal loading occurred. -
表 1 R1、R2和R3在不同运行阶段的操作条件
Table 1. Operating conditions of R1, R2 and R3 at different stages
反应器 阶段 运行时间/d 进水NH4+-N浓度/(mg·L−1) HRT/h 氮容积负荷/(kg·(m3·d)−1) R1 激活期 0~4 150 1.5 2.4 恢复期 5~75 175~275 1.5 2.8~4.4 成熟期 76~100 300~400 1.5 4.8~6.4 R2 激活期 0~4 150 1.5 2.4 恢复期 5~59 275 1.5 2.8~4.4 成熟期 60~99 400 1.5 4.8~6.4 R3 激活期 0~4 150 1.5 2.40 恢复期 5~35 175~275 1.6~2.0 2.63~3.30 成熟期 36~48 275 1.9~1.5 3.47~4.40 成熟期 49~71 300~400 1.6~2.0 4.50~4.80 成熟期 72~84 400 1.9~1.5 5.05~6.40 表 2 不同时期各反应器SNRR、SAOR和TN去除负荷变化
Table 2. Changes of SNRR, SAOR and total nitrogen removal loadings in three reactors at different stages
时间 R1 R2 R3 TN去除负荷/
(kg·(m3·d)−1)SNRR/
(mg·(g·h)−1)SAOR/
(mg·(g·h)−1)TN去除负荷/
(kg·(m3·d)−1)SNRR/
(mg·(g·h)−1)SAOR/
(mg·(g·h)−1)TN去除负荷/
(kg·(m3·d)−1)SNRR/
(mg·(g·h)−1)SAOR/
(mg·(g·h)−1)第0天 1.2±0.09 5.4±0.25 3.7±0.30 1.2±0.09 5.4±0.25 3.7±0.30 1.2±0.09 5.4±0.25 3.7±0.30 第9天 1.1±0.11 4.2±0.26 3.0±0.42 1.2±0.28 6.1±0.97 4.1±0.57 1.3±0.14 6.6±1.05 4.4±0.70 第43天 2.1±0.28 8.8±0.61 6.1±0.61 2.5±0.13 11.4±0.91 7.8±0.48 3.0±0.241) 12.8±0.991) 8.7±1.041) 第60天 2.5±0.42 10.4±0.74 7.4±0.47 2.9±0.311) 12.9±0.781) 8.8±0.521) 3.4±0.21 14.6±0.50 9.8±0.95 第75天 2.9±0.171) 12.6±0.721) 8.6±0.421) 3.2±0.22 13.7±1.03 9.6±0.32 3.7±0.11 15.7±0.67 10.1±0.42 第85天 4.4±0.37 16.9±1.69 11.2±0.67 4.5±0.17 15.2±1.12 9.9±0.99 5.2±0.431) 16.0±0.641) 10.2±0.401) 第105天 5.3±0.171) 17.4±0.241) 11.0±0.201) 5.3±0.111) 17.6±0.431) 10.6±0.411) 5.3±0.181) 16.8±0.511) 10.4±0.481) 注:1)为运行稳定状态时数据。 -
[1] SLIEKERS A O, DERWORT N, GOMEZ J L, et al. Completely autotrophic nitrogen removal over nitrite in one single reactor[J]. Water Research, 2002, 36(10): 2475-2482. doi: 10.1016/S0043-1354(01)00476-6 [2] WANG Y M, GONG B Z, LIN Z Y, et al. Robustness and microbial consortia succession of simultaneous partial nitrification, ANAMMOX and denitrification (SNAD) process for mature landfill leachate treatment under low temperature[J]. Biochemical Engineering Journal, 2018, 132: 112-121. doi: 10.1016/j.bej.2018.01.009 [3] ZHAO J, ZUO J, LIN J, et al. The performance of a combined nitritation-anammox reactor treating anaerobic digestion supernatant under various C/N ratios[J]. Journal of Environmental Sciences, 2015, 30(4): 207-214. [4] LI J W, LI J L, GAO R T, et al. A critical review of one-stage anammox processes for treating industrial wastewater: Optimization strategies based on key functional microorganisms[J]. Bioresource Technology, 2018, 256: 498-505. [5] VARAS R, GUZMÁN-FIERRO V, GIUSTINIANOVICH E, et al. Startup and oxygen concentration effects in a continuous granular mixed flow autotrophic nitrogen removal reactor[J]. Bioresource Technology, 2015, 190: 345-351. doi: 10.1016/j.biortech.2015.04.086 [6] DAPENA-MORA A, FERNÁNDEZ I, CAMPOS J L, et al. Evaluation of activity and inhibition effects on Anammox process by batch tests based on the nitrogen gas production[J]. Enzyme and Microbial Technology, 2007, 40(4): 859-865. doi: 10.1016/j.enzmictec.2006.06.018 [7] 李冬, 郭跃洲, 曹美忠, 等. 好氧/除磷颗粒对亚硝化颗粒污泥启动的影响[J]. 环境科学, 2018, 39(2): 872-879. [8] LIU Y Q, WU W W, TAY J H, et al. Formation and long-term stability of nitrifying granules in a sequencing batch reactor[J]. Bioresource Technology, 2008, 99(9): 3919-3922. doi: 10.1016/j.biortech.2007.07.041 [9] 王会芳, 付昆明, 左早荣, 等. 水力停留时间和溶解氧对陶粒CANON反应器的影响[J]. 环境科学, 2015, 36(11): 4161-4167. [10] 李冬, 崔少明, 梁瑜海, 等. 溶解氧对序批式全程自养脱氮工艺运行的影响[J]. 中国环境科学, 2014, 34(5): 1131-1138. [11] FORD D L, CHURCHWELL R L, KACHTICK J W. Comprehensive analysis of nitrification of chemical processing wastewaters[J]. Journal Water Pollution Control Federation, 1980, 52(11): 2726-2746. [12] WANG S, LIU Y, NIU Q G, et al. Nitrogen removal performance and loading capacity of a novel single-stage nitritation-anammox system with syntrophic micro-granules[J]. Bioresource Technology, 2017, 236(7): 119-128. [13] 陈希, 钱飞跃, 王建芳, 等. 环境因子对全自养脱氮颗粒污泥功能菌协同效应的影响[J]. 环境科学, 2018, 39(4): 1756-1762. [14] WINKLER M K H, KLEEREBEZEM R, KUENEN J G, et al. Segregation of biomass in cyclic anaerobic/aerobic granular sludge allows the enrichment of anaerobic ammonium oxidizing bacteria at low temperatures[J]. Environmental Science & Technology, 2011, 45(17): 7330-7337. [15] 张肖静, 李冬, 梁瑜海, 等. 氨氮浓度对CANON工艺性能及微生物特性的影响[J]. 中国环境科学, 2014,34(7): 1715-1721. [16] ZHANG X J, LI D, LIANG Y H, et al. Performance and microbial community of completely autotrophic nitrogen removal over nitrite (CANON) process in two membrane bioreactors (MBR) fed with different substrate levels[J]. Bioresource Technology, 2014, 152: 185-191. doi: 10.1016/j.biortech.2013.10.110 [17] 高军军, 钱飞跃, 王建芳, 等. 利用好氧颗粒污泥持续增殖启动高性能亚硝化反应器[J]. 环境科学, 2017, 38(9): 3787-3792. [18] 张婷, 吴鹏, 沈耀良, 等. CSTR和MBR反应器的短程硝化快速启动[J]. 环境科学, 2017, 38(8): 3399-3405. [19] POOT V, HOEKSTRA M, GELEIJNSE M A A, et al. Effects of the residual ammonium concentration on NOB repression during partial nitritation with granular sludge[J]. Water Research, 2016, 106: 518-530. doi: 10.1016/j.watres.2016.10.028 [20] 钱飞跃, 王琰, 王建芳, 等. 长期储存亚硝化颗粒污泥的活化及菌群结构变化[J]. 中国环境科学, 2016, 36(4): 1052-1058. doi: 10.3969/j.issn.1000-6923.2016.04.014 [21] 刘文如, 沈耀良, 丁玲玲, 等. 接种好氧颗粒污泥快速启动硝化工艺的过程研究[J]. 环境科学, 2013, 34(6): 2302-2308. [22] CHEN T T, ZHENG P, SHEN L D, et al. Dispersal and control of anammox granular sludge at high substrate concentrations[J]. Biotechnology and Bioprocess Engineering, 2012, 17(5): 1093-1102. doi: 10.1007/s12257-012-0086-2 [23] 孙延芳, 韩晓宇, 张树军, 等. CANON颗粒污泥工艺的启动与负荷提高策略[J]. 环境科学, 2017, 38(8): 3429-3434. [24] 游骐羽, 刘琳, 刘超翔, 等. 粒径控制对好氧颗粒污泥处理高含氮废水的影响[J]. 环境工程, 2016, 34(3): 32-37. [25] 季民, 刘灵婕, 翟洪艳, 等. 高浓度游离氨冲击负荷对生物硝化的影响机制[J]. 环境科学, 2017, 38(1): 260-268. [26] 王元月, 魏源送, 张树军. 厌氧氨氧化技术处理高浓度氨氮工业废水的可行性分析[J]. 环境科学学报, 2013, 33(9): 2359-2368. [27] STEIN L Y, ARP D J. Loss of ammonia monooxygenase activity in nitrosomonas europaea upon exposure to nitrite[J]. Applied Environmental Microbiology, 1998, 64(10): 4098-4102. [28] LI S, CHEN Y P, LI C, et al. Influence of free Ammonia on completely autotrophic nitrogen removal over nitrite (CANON) process[J]. Applied Biochemistry and Biotechnology, 2012, 167(4): 694-704. doi: 10.1007/s12010-012-9726-4 [29] ZHANG Y L, HE S L, NIU Q G, et al. Characterization of three types of inhibition and their recovery processes in an anammox UASB reactor[J]. Biochemical Engineering Journal, 2016, 109(5): 212-221. [30] WAKI M, TOKUTOMI T, YOKOYAMA H, et al. Nitrogen removal from animal waste treatment water by anammox enrichment[J]. Bioresource Technology, 2007, 98(14): 2775-2780. doi: 10.1016/j.biortech.2006.09.031 [31] QIAN W T, PENG Y Z, LI X Y, et al. The inhibitory effects of free ammonia on ammonia oxidizing bacteria and nitrite oxidizing bacteria under anaerobic condition[J]. Bioresource Technology, 2017, 243: 1247-1250. doi: 10.1016/j.biortech.2017.07.119 [32] 何仕均, 王建龙, 赵璇. 氨氮对厌氧颗粒污泥产甲烷活性的影响[J]. 清华大学学报(自然科学版), 2005, 45(9): 1294-1296. [33] OSHIKI M, SATOH H, OKABE S. Ecology and physiology of anaerobic ammonium oxidizing bacteria[J]. Environmental Microbiology, 2016, 18(9): 2784-2796. doi: 10.1111/1462-2920.13134 [34] 张姚, 韩海成, 王伟刚, 等. 溶解氧对CANON颗粒污泥自养脱氮性能的影响[J]. 中国环境科学, 2017, 37(12): 4501-4510. doi: 10.3969/j.issn.1000-6923.2017.12.012