-
厌氧氨氧化(Anammox)是一种高效节能的新型脱氮水处理工艺,主要通过将
${\rm{NO}}_2^{-} $ -N和${\rm{NH}}_4^{+} $ -N在厌氧条件下转化为氮气来减少废水中氮的含量。但厌氧氨氧化菌长达11~19 d的倍增时间使得厌氧氨氧化反应器启动时间过长,限制了其实现工程化应用。有研究表明,用传统的硝化污泥启动,整个周期过程长达6~24个月[1-2],而部分或全部使用厌氧氨氧化污泥接种可以使启动时间缩短到1~6个月[3-4],是快速启动Anammox工艺的首要选择。因此,Anammox工艺工程化需要重视厌氧氨氧化污泥种泥的保存问题,但长期保存会使污泥处于饥饿状态,从而对接种污泥的活性产生一定影响。饥饿状态下厌氧氨氧化污泥的活性和形态变化已有较多研究。黄佳路[5]发现,室温是污泥贮存的最佳温度,在室温无外源基质添加的存储条件下,厌氧氨氧化菌活性随保藏时间的延长而直线下降,储存到180 d的饥饿污泥恢复后,其比厌氧氨氧化活性仅为存储前的82.7%。汪彩华等[6]对4 ℃保存下的厌氧氨氧化污泥进行了研究,发现随保存时间的延长,污泥的颗粒结构会逐渐解体,保存到5个月时,混培物颜色变黑。由此可见,污泥形态和污泥储存有一定的相关性。颗粒污泥和絮状污泥的活性和其他特性均有较大差别,且这2种不同形态的厌氧氨氧化污泥在饥饿期后重新补加营养基质时的响应如何?饥饿后形态解体的污泥是否可以用作接种污泥启动厌氧氨氧化反应器?基于此,关于不同形态的厌氧氨氧化污泥对饥饿的响应问题还须进一步研究。
本研究将饥饿后的厌氧氨氧化絮状污泥接种到发酵罐,观察了启动所需时间及期间的活性和形态变化,同时通过批式实验考察了絮状和颗粒状厌氧氨氧化污泥对饥饿的响应规律,以期为长期保存下的厌氧氨氧化接种污泥的活性恢复和应用提供技术参考。
饥饿对厌氧氨氧化污泥颗粒化及污泥形态的影响
Effects of starvation on granulation and morphology of Anammox sludge
-
摘要: 厌氧氨氧化颗粒污泥经过长期保存会逐渐解体成絮状,但目前关于保存后期的饥饿环境对不同形态污泥的影响尚缺乏深入研究。针对该问题,以饥饿15 d颗粒解体后的厌氧氨氧化絮状污泥作为接种污泥,考察了其颗粒化过程及其对于反应器启动和运行的影响,同时对比研究了絮状和颗粒状厌氧氨氧化污泥对于饥饿的响应及其活性恢复情况。结果表明:饥饿10 d后补料继续培养3个批次,厌氧氨氧化颗粒污泥反应活性的恢复速率高于絮状污泥;接种厌氧氨氧化絮状污泥80 d左右,反应器中
${\rm{NH}}_4^{+} $ -N和${\rm{NO}}_2^{-} $ -N的去除率均达到100%,160 d可以实现污泥的颗粒化。此研究结果可为利用长期保存下的种泥启动厌氧氨氧化反应器提供参考。Abstract: Anammox granular sludge will gradually disintegrate into floccus structure after long-term preservation, but the research on the effect of starvation on sludge with different forms at late stage of preservation is not sufficient at present. To solve this problem, this study focused on the start-up and granulation process of the reactor when Anammox floc sludge after 15 days starvation and granular disintegration was taken as inoculum, the responses of floc and granular Anammox sludge to starvation and their activity recovery were investigated. The experiment results showed that the reactivity recovery rate of Anammox granular sludge was higher than that of floc sludge after 10 days of starvation and continuous cultivation of three batches with addition of substrates. After about 80 days of Anammox floc sludge inoculation, the removal rates of both ammonia nitrogen and nitrous acid state reached 100%, and the sludge granulation could be realized within 160 days. The study provides reference for Anammox reactor start-up by using long-term preserved sludge.-
Key words:
- Anammox /
- granular sludge /
- floc sludge /
- granulation /
- starvation
-
-
[1] TAO W, HANMIN Z, FENGLIN Y, et al. Start-up of the Anammox process from the conventional activated sludge in a membrane bioreactor[J]. Bioresource Technology, 2009, 100(9): 2501-2506. doi: 10.1016/j.biortech.2008.12.011 [2] 李津, 于德爽. C/N比对Anammox与反硝化协同脱氮性能影响及其动力学研究[J]. 环境工程学报, 2016, 10(6): 2813-2818. doi: 10.12030/j.cjee.201503158 [3] MALAMIS S, KATSOU E, FRISON N, et al. Start-up of the completely autotrophic nitrogen removal process using low activity Anammox inoculum to treat low strength UASB effluent[J]. Bioresource Technology, 2013, 148: 467-473. doi: 10.1016/j.biortech.2013.08.134 [4] ALI M, OSHIKI M, OKABE S. Simple, rapid and effective preservation and reactivation of anaerobic ammonium oxidizing bacterium Candidatus Brocadia sinica[J]. Water Research, 2014, 57(5): 215-222. [5] 黄佳路. 厌氧氨氧化污泥的储存及活性恢复研究[D]. 哈尔滨: 哈尔滨工业大学, 2017. [6] 汪彩华, 郑平, 唐崇俭, 等. 间歇性饥饿对厌氧氨氧化菌混培物保藏特性的影响[J]. 环境科学学报, 2013, 33(1): 36-43. doi: 10.11654/jaes.2013.01.006 [7] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [8] 彭诚, 任涛, 段侪杰. 基于体视显微镜的立体视觉测量系统[J]. 清华大学学报(自然科学版), 2015,55(2): 223-230. [9] 张蕾. 厌氧氨氧化性能的研究[D]. 杭州: 浙江大学, 2009. [10] STROUS M M, KUENEN J G J, JETTEN M S M. Key physiology of anaerobic ammonium oxidation[J]. Applied and Environmental Microbiology, 1999, 65(7): 3248-3250. [11] 张龙, 肖文德. 厌氧氨氧化菌混培物的培养及上流式厌氧污泥床反应器运行[J]. 华东理工大学学报(自然科学版), 2005, 31(1): 99-102. doi: 10.3969/j.issn.1006-3080.2005.01.024 [12] 李建政, 张立国, 班巧英, 等. 好氧活性污泥在升流式厌氧污泥床反应器中的厌氧颗粒化过程及机制[J]. 科技导报, 2012, 30(36): 19-23. doi: 10.3981/j.issn.1000-7857.2012.36.001 [13] 唐崇俭, 郑平, 汪彩华, 等. 高负荷厌氧氨氧化EGSB反应器的运行及其颗粒污泥的ECP特性[J]. 化工学报, 2010, 61(3): 732-739. [14] ARROJO B, MOSQUERA-CORRAL A, CAMPOS J L, et al. Effects of mechanical stress on Anammox granules in a sequencing batch reactor (SBR)[J]. Journal of Biotechnology, 2006, 123(4): 453-463. doi: 10.1016/j.jbiotec.2005.12.023 [15] TANG C J, ZHENG P, MAHMOOD Q. The shear force amendments on the slugging behavior of upflow Anammox granular sludge bed reactor[J]. Separation & Purification Technology, 2009, 69(3): 262-268. [16] KUENEN J G. Anammox bacteria: From discovery to application[J]. Nature Reviews Microbiology, 2008, 6(4): 320-326. doi: 10.1038/nrmicro1857 [17] DAIMS H, LEBEDEVA E V, PJEVAC P, et al. Complete nitrification by Nitrospira bacteria[J]. Nature, 2015, 528(7583): 504-509. doi: 10.1038/nature16461 [18] KESSEL M A H J V, SPETH D R, ALBERTSEN M, et al. Complete nitrification by a single microorganism[J]. Nature, 2015, 528(7583): 555-559. doi: 10.1038/nature16459 [19] KITS K D, SEDLACEK C J, LEBEDEVA E V, et al. Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle[J]. Nature, 2017, 549(7671): 269-272. doi: 10.1038/nature23679 [20] 董兴水, 王智慧, 黄学茹, 等. 硝化作用研究的新发现: 单步硝化作用与全程氨氧化微生物[J]. 应用生态学报, 2017, 28(1): 345-352.