-
近年来,随着印染工业的迅猛发展,工业废水的排放量也在逐年增加,其中染料废水约占工业废水总排放量的10%[1]。染料废水具有色度高,成分复杂,化学性质比较稳定,难生物降解等特点[2]。染料废水中含有的大部分有机物能够致癌、致畸和致突变,对人类身体健康和生态系统造成极大的破坏[3]。酸性大红3R(AR3R)是一种常用的偶氮酸性染料,含有对生物呈强抑制作用的苯环,并且为高共轭分子体系,无法采用一般方法将其降解成无机小分子。少量的AR3R物质,即可造成大范围的水污染,达不到废水排放的无色要求。AR3R的降解处理,对于其他含有相似结构的有机物也具有推广意义[4]。
目前,染料的去除方法主要包括生物处理法、化学处理法、电化学絮凝法、膜过滤法、氧化法和吸附法[5]。其中,因吸附法具有操作简单、可供选择的吸附材料丰富和见效快等优点,故已得到广泛应用[6]。碳质材料是一种传统的吸附剂材料,其中,活性炭是应用最广泛的吸附剂。但这些碳质材料大多数具有微孔的结构,从而限制了其在高分子染料去除上的应用[7]。
金属有机骨架(metal-organic framework,MOFs)是由金属离子和有机骨架通过配位键构筑的一类配位聚合物。MOFs具有较高的孔径、较大的比表面积、可调谐的活性位点和可功能化的有机骨架等独特的理化性质[8]。MOFs最大的优点就是具有较简单的合成步骤,可以通过设计调谐不同的金属离子和有机骨架来合成具有不同理化性质的MOFs材料[9]。但传统的MOFs材料由于在水介质中不稳定从而限制了它在水体治理与修复中的应用[5]。本研究以Sn4+为金属中心、对苯二甲酸为有机配体,利用水热法合成出了一种水稳定性较高的金属有机骨架(Sn-MOF),并用XRD、FT-IR、TEM、BET等手段对Sn-MOF进行了表征。以AR3R为目标污染物,系统地研究了AR3R在Sn-MOF表面上的吸附特性及相关的影响因素,为实现MOFs材料在染料废水处理中的应用进行了初步的探索。
Sn-MOF对染料废水中酸性大红3R的吸附特性
Adsorption characteristics of acid red 3R in dyes wastewater by Sn-MOF
-
摘要: 通过水热法合成了一种新型的金属有机骨架Sn-MOF,研究了Sn-MOF对染料废水中酸性大红3R(AR3R)的吸附特性。通过SEM、TEM、比表面积测定和红外光谱等方法对Sn-MOF进行了表征,并探讨了初始pH、吸附剂投加量对吸附效果的影响。用拟一级动力学方程、拟二级动力学方程、Elovich方程、粒子扩散方程对吸附曲线进行了分析,研究了其吸附的动力学机理。在研究的条件范围内,拟二级动力学方程和Elovich方程的拟合度较好。通过吸附等温线拟合发现Freundlich方程(R2=0.986 8)能很好地描述Sn-MOF对AR3R的吸附行为,这说明Sn-MOF对AR3R的吸附是化学吸附。粒子扩散方程表明,粒子内扩散不是控制Sn-MOF吸附过程的唯一步骤,膜扩散也参与了吸附过程。热力学实验结果表明,AR3R的去除过程是一种自发的吸热过程。经光催化再生处理6个循环后,吸附容量没有明显降低。
-
关键词:
- Sn-MOF /
- 酸性大红3R(AR3R) /
- 吸附动力学 /
- 吸附热力学
Abstract: In this study, a novel metal-organic framework of Sn-MOF was synthesized by hydrothermal method, and its adsorption characteristics of acid red 3R (AR3R) in dyes wastewater was tested. The Sn-MOF was characterized by SEM, TEM, BET and FT-IR. The effects of initial pH and Sn-MOF dosage on the adsorption performance were investigated. The adsorption kinetic mechanism was studied by using the first-order kinetic equation, the quasi-second-order kinetic equation, the Elovich equation and the particle diffusion equation. The results showed that the adsorption kinetics could be better fitted by the quasi-second-order kinetic equation and the Elovich equation, which indicated that the adsorption of AR3R by Sn-MOF was chemisorption. The particle diffusion equation showed that the intraparticle diffusion was not the only step to control the adsorption process, and the membrane diffusion also took part in the adsorption process. Through adsorption isotherm fitting, it could be found that Freundlich equation (R2=0.986 8) could well describe the adsorption behavior of AR3R on Sn-MOF, which further indicated that the adsorption of AR3R by Sn-MOF is chemisorption. Thermodynamic experiments showed that the removal process of AR3R was a spontaneous endothermic process. The adsorption capacity of photocatalytic regenerated Sn-MOF did not decrease obviously after six cycles.-
Key words:
- Sn-MOF /
- acid red 3R(AR3R) /
- adsorption kinetics /
- adsorption thermodynamics
-
表 1 Sn-MOF对AR3R的吸附动力学参数
Table 1. Adsorption kinetic parameters of AR3R by Sn-MOF
C0/(mg·L−1) 拟一级动力学方程 拟二级动力学方程 Elovich方程 qe/(mg·g−1) k1/h−1 R2 qe/(mg·g−1) k2/(g·(mg·h)−1) R2 A B R2 400 132.212 0.576 9 0.918 9 154.675 0.004 8 0.963 5 71.459 1 29.943 1 0.985 8 表 2 Sn-MOF对AR3R的颗粒内扩散动力学参数
Table 2. Intraparticle diffusion kinetic parameters of AR3R by Sn-MOF
第1阶段 第2阶段 K1d/(g·(mg·h1/2)−1) C1/(mg·g−1) R2 K2d/(g·(mg·h1/2)−1) C2/(mg·g−1) R2 75.272 1 21.643 2 0.952 2 36.193 1 36.442 8 0.975 9 表 3 吸附等温线参数和可决系数
Table 3. Adsorption isotherm parameters and the correlation coefficients
Langmuir等温方程 Freundlich等温方程 qm/(mg·g−1) KL/(L·mg−1) R2 KF/(mg·g−1) n R2 87.98 0.777 5 0.721 8 57.29 0.081 4 0.986 8 表 4 不同温度下的吸附动力学参数(拟二级动力学方程拟合)
Table 4. Adsorption kinetics parameters at different temperatures (pseudo-second-order kinetics model)
热力学温度/K qe/(mg·g−1) k2/(g·(mg·h)−1) R2 323.15 150.90 0.002 14 0.999 7 333.15 152.54 0.003 06 0.990 2 343.15 171.19 0.006 52 0.994 5 表 5 活化能及热力学参数
Table 5. Parameters of activation energies and thermodynamic
热力学
温度/KΔG0/
(kJ·mol−1)ΔS0/
(kJ·(mol·K)−1)ΔH0/
(kJ·mol−1)Ea/
(kJ·mol−1)323.15 −1.106 0.059 17.96 51.46 333.15 −1.696 343.15 −2.286 -
[1] ROTT U, MINKE R. Overview of wastewater treatment and recycling in the textile processing industry[J]. Water Science & Technology, 1999, 40(1): 137-144. [2] 张波, 戚永洁, 蒋素英, 等. 铁碳微电解-生物膜法-高级氧化工艺处理印染废水中试研究[J]. 环境工程学报, 2018, 36(3): 44-48. [3] 刘斌, 李孟斌, 王红华. 水中染料在活性炭上的动态吸附行为研究[J]. 工业水处理, 2018, 38(5): 21-24. doi: 10.11894/1005-829x.2018.38(5).021 [4] 赵景联, 种法国, 赵靓, 等. 磁场TiO2光催化耦合降解酸性大红3R的研究[J]. 西安交通大学学报, 2006, 40(7): 851-855. doi: 10.3321/j.issn:0253-987X.2006.07.025 [5] JUNG K W, CHOI B H, DAO C M, et al. Aluminum carboxylate-based metal organic frameworks for effective adsorption of anionic azo dyes from aqueous media[J]. Journal of Industrial & Engineering Chemistry, 2017, 59(3): 149-159. [6] AYATI A, SHAHRAK M N, TANHAEI B, et al. Emerging adsorptive removal of azo dye by metal-organic frameworks[J]. Chemosphere, 2016, 160(32): 30-44. [7] HASAN Z, JHUNG S H. Removal of hazardous organics from water using metal-organic frameworks(MOFs): Plausible mechanisms for selective adsorptions[J]. Journal of Hazardous Materials, 2015, 283(8): 329-339. [8] QIU J, YI F, ZHANG X, et al. Acid-promoted synthesis of UiO-66 for highly selective adsorption of anionic dyes: Adsorption performance and mechanisms[J]. Journal of Colloid & Interface Science, 2017, 499(7): 151-158. [9] MCDONALD T M, LEE W R, MASON J A, et al. Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal-organic framework mmen-Mg2(dobpdc)[J]. Journal of the American Chemical Society, 2012, 134(16): 7056-7068. doi: 10.1021/ja300034j [10] BAI S, LIU C, LUO R, et al. Metal organic frameworks-derived sensing material of SnO2/NiO composites for detection of triethylamine[J]. Applied Surface Science, 2017, 437(15): 304-311. [11] 龚正君, 周文波, 陈钰. 活性炭纤维对水中酸性染料的吸附研究[J]. 工业水处理, 2012, 32(9): 24-28. doi: 10.3969/j.issn.1005-829X.2012.09.007 [12] 张聪璐, 胡筱敏. 磁性壳聚糖衍生物对阴离子染料的吸附行为[J]. 环境科学, 2015, 36(1): 55-56. doi: 10.3969/j.issn.1673-288X.2015.01.013 [13] 马锋锋, 赵保卫, 刁静茹, 等. 牛粪生物炭对水中氨氮的吸附特性[J]. 环境科学, 2015, 36(5): 1678-1685. [14] DANESHVAR E, KOUSHA M, SOHRABI M S, et al. Biosorption of three acid dyes by the brown macroalga Stoechospermum marginatum: Isotherm, kinetic and thermodynamic studies[J]. Chemical Engineering Journal, 2012, 74(2): 195-196. [15] MARZBALI M H, ESMAIELI M, ABOLGHASEMI H, et al. Tetracycline adsorption by H3PO4-activated carbon produced from apricot nut shells: A batch study[J]. Process Safety & Environmental Protection, 2016, 102(6): 700-709. [16] 成芳芳, 孔庆山, 纪全, 等. 海藻酸纤维对水溶液中Fe3+的吸附动力学研究[J]. 合成纤维工业, 2010, 33(2): 1-4. doi: 10.3969/j.issn.1001-0041.2010.02.001 [17] CANZANO S, IOVINO P, SALVESTRINI S, et al. Comment on “Removal of anionic dye congo red from aqueous solution by raw pine and acid-treated pine cone powder as adsorbent: Equilibrium, thermodynamic, kinetics, mechanism and process design”[J]. Water Research, 2012, 46(13): 4314-4315. doi: 10.1016/j.watres.2012.05.040 [18] 吴盼盼, 方婷婷, 于欢, 等. 有机改性镁铝层状氢氧化物对酸性橙Ⅱ的吸附研究[J]. 环境科学学报, 2013, 33(6): 1576-1584. [19] 白鹭, 吴春英, 魏薇, 等. 稻壳对废水中Cr(Ⅵ)吸附及动力学研究[J]. 粮食与油脂, 2018, 31(2): 45-49. doi: 10.3969/j.issn.1008-9578.2018.02.013 [20] LIN Y, YING Z, WENHUI S, et al. Synthesis of a novel (NH4)3PW11O39Sn/TiO2 heterostructure for efficient photocatalytic degradation and removal of water pollutants[J]. Materials Letters, 2019, 237(32): 137-140.