利用反硝化法净化难降解吡啶废气

卓猛, 何成达, 刘伟慧. 利用反硝化法净化难降解吡啶废气[J]. 环境工程学报, 2017, 11(12): 6345-6350. doi: 10.12030/j.cjee.201702127
引用本文: 卓猛, 何成达, 刘伟慧. 利用反硝化法净化难降解吡啶废气[J]. 环境工程学报, 2017, 11(12): 6345-6350. doi: 10.12030/j.cjee.201702127
ZHUO Meng, HE Chengda, LIU Weihui. Purification of refractory pyridine waste gas by anoxic denitrification[J]. Chinese Journal of Environmental Engineering, 2017, 11(12): 6345-6350. doi: 10.12030/j.cjee.201702127
Citation: ZHUO Meng, HE Chengda, LIU Weihui. Purification of refractory pyridine waste gas by anoxic denitrification[J]. Chinese Journal of Environmental Engineering, 2017, 11(12): 6345-6350. doi: 10.12030/j.cjee.201702127

利用反硝化法净化难降解吡啶废气

  • 基金项目:
  • 中图分类号: X701.7

Purification of refractory pyridine waste gas by anoxic denitrification

  • Fund Project:
  • 摘要: 利用反硝化的方法处理吡啶气体,并通过与普通生物洗涤塔对吡啶废气处理效果的对比研究,探索了难降解VOC-吡啶废气反硝化净化过程的几个问题。实验设置实验组(1#反应器)和对照组(2#反应器),结果表明,1#对吡啶废气的去除能力更大,最大去除负荷为84.5 mg·(L·h)-1,而2#最大去除负荷为49.2 mg·(L·h)-1。1#系统中反硝化作用对净化吡啶的贡献率,在一定范围内,随着进气浓度的增大而增大。当进气浓度从250 mg·m-3增大到1 000 mg·m-3,反硝化去除负荷从8.0 mg·(L·h)-1增加到62.8 mg·(L·h)-1,在总去除负荷中所占比重从32.5%增加到73.6%,随着进气负荷的增加,反硝化逐渐起主要作用。
  • 加载中
  • [1] 王艳芳, 沙昊雷, 於建明. 低浓度VOCs废气处理技术进展[J]. 能源环境保护,2007,21(3):8-12
    [2] RALEBITSOSENIOR T K, SENIOR E, FELICE R D, et al. Waste gas biofiltration:advances and limitations of current approaches in microbiology[J]. Environmental Science & Technology,2012,46(16):8542-8573
    [3] 李长英, 陈明功, 盛楠,等. 挥发性有机物处理技术的特点与发展[J]. 化工进展,2016,35(3):917-925
    [4] 陆继来, 尹协东, 夏明芳,等. 生物法净化低浓度工业废气的技术进展[J]. 污染防治技术,2006,19(4):37-41
    [5] MUDLIAR S, GIRI B, PADOLEY K, et al. Bioreactors for treatment of VOCs and odours-A review[J]. Journal of Environmental Management,2010,91(5):1039-1054
    [6] 周应坤, 何成达, 卢勇,等. 利用缺氧反硝化降解硝基苯的试验[J]. 水资源保护,2009,25(4):64-66
    [7] ALVAREZ P J J, VOGEL T M. Degradation of BTEX and their aerobic metabolites by indigenous microorganisms under nitrate reducing conditions[J]. Water Science & Technology,1995,31(31):15-28
    [8] BARBARO J R, BARKER J F, LEMON L A, et al. Biotransformation of BTEX under anaerobic, denitrifying conditions:Field and laboratory observations[J]. Journal of Contaminant Hydrology,1992,11(3/4):245-272
    [9] 申海虹, 顾国维, 李咏梅. 缺氧反硝化去除难降解杂环化合物吡啶研究[J]. 上海环境科学,2001(11):530-533
    [10] KAISER J P, FENG Y, BOLLAG J M. Microbial metabolism of pyridine, quinoline, acridine, and their derivatives under aerobic and anaerobic conditions.[J]. Microbiological Reviews,1996,60(3):483-98
    [11] 饶佳家, 陈柄灿, 孙兴福,等. 生物法处理挥发性有机废气的研究[J]. 环境污染治理技术与设备,2004,5(9):56-60
    [12] XI J, HU H Y, QIAN Y. Effect of operating conditions on long-term performance of a biofilter treating gaseous toluene:Biomass accumulation and stable-run time estimation[J]. Biochemical Engineering Journal,2006,31(2):165-172
    [13] PEDERSEN A R, ARVIN E. Removal of toluene in waste gases using a biological trickling filter[J]. Biodegradation,1995,6(2):109-118
    [14] OTTENGRAF S P P, OEVER A H C V D. Kinetics of organic compound removal from waste gases with a biological filter[J]. Biotechnology & Bioengineering,1984,25(12):3089-3102
    [15] LI H Q, HAN H J, DU M A. Effect of nitrate concentration on performance of pre-denitrification moving bed biofilm reactor system in treating coal gasification wastewater[J]. Desalination and Water Treatment,2013,51(31/32/33):5996-6002
  • 加载中
计量
  • 文章访问数:  2490
  • HTML全文浏览数:  2253
  • PDF下载数:  312
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-07-16
  • 刊出日期:  2017-12-07
卓猛, 何成达, 刘伟慧. 利用反硝化法净化难降解吡啶废气[J]. 环境工程学报, 2017, 11(12): 6345-6350. doi: 10.12030/j.cjee.201702127
引用本文: 卓猛, 何成达, 刘伟慧. 利用反硝化法净化难降解吡啶废气[J]. 环境工程学报, 2017, 11(12): 6345-6350. doi: 10.12030/j.cjee.201702127
ZHUO Meng, HE Chengda, LIU Weihui. Purification of refractory pyridine waste gas by anoxic denitrification[J]. Chinese Journal of Environmental Engineering, 2017, 11(12): 6345-6350. doi: 10.12030/j.cjee.201702127
Citation: ZHUO Meng, HE Chengda, LIU Weihui. Purification of refractory pyridine waste gas by anoxic denitrification[J]. Chinese Journal of Environmental Engineering, 2017, 11(12): 6345-6350. doi: 10.12030/j.cjee.201702127

利用反硝化法净化难降解吡啶废气

  • 1. 扬州大学环境科学与工程学院, 江苏省水环境保护技术与装备工程实验室, 扬州 225000
基金项目:

摘要: 利用反硝化的方法处理吡啶气体,并通过与普通生物洗涤塔对吡啶废气处理效果的对比研究,探索了难降解VOC-吡啶废气反硝化净化过程的几个问题。实验设置实验组(1#反应器)和对照组(2#反应器),结果表明,1#对吡啶废气的去除能力更大,最大去除负荷为84.5 mg·(L·h)-1,而2#最大去除负荷为49.2 mg·(L·h)-1。1#系统中反硝化作用对净化吡啶的贡献率,在一定范围内,随着进气浓度的增大而增大。当进气浓度从250 mg·m-3增大到1 000 mg·m-3,反硝化去除负荷从8.0 mg·(L·h)-1增加到62.8 mg·(L·h)-1,在总去除负荷中所占比重从32.5%增加到73.6%,随着进气负荷的增加,反硝化逐渐起主要作用。

English Abstract

参考文献 (15)

返回顶部

目录

/

返回文章
返回