城市干污泥热解气化
Pyrolysis and Gasification of Municipal Dry Sludge
-
摘要: 针对包头市南郊污水处理厂污水污泥,采用先热解后对热解残渣进行气化的方法探讨城市污泥的有效利用方式。污泥热解实验取升温速率(20~60℃·min-1)和终温(400~600℃)作为影响因素,得出各热解产物产率的变化规律。结果表明,污泥热解在终温为600℃时失重率达到57.53%,焦油产率在450℃达到峰值。污泥残渣的气化分别以水蒸气和CO2作为气化剂,探讨了800~1 000℃范围内的气化产品气组分变化规律。以水蒸气为气化剂时,污泥热解残渣的可制备富氢产品气,产品气中H2体积分数随着反应温度的增加而增加,1 000℃时H2含量可达68.83%,H2+CO含量达到81.36%,低位热值为9.18 MJ·Nm-3。以CO2作为气化剂时,产品气中富含CO,温度越高CO含量越高,1 000℃时到达最大值53.84%,产品气低位热值为7.25 MJ·Nm-3。Abstract: The main objective of this study is to discuss the effective utilization of municipal sludge by method of gasification after pyrolysis, the sludge is from Baotou south suburb sewage treatment plant. The variation law of pyrolysis yields were obtained at heating rate from 20 to 60℃·min-1 and final pyrolysis temperatures in the range from 400 to 600℃. The results showed that the weight loss rate was 57.53% at the final temperature of 600℃, and the tar yield reached the maximum value of 26.25% at 450℃. Gasification of sludge pyrolysis residue was carried out with steam and CO2 as the gasification agent respectively, the variation of the composition of gasification product gas at temperatures from 800 to 1 000℃ was discussed. The experimental results showed that the product gas of gasification of pyrolysis residue is hydrogen-rich gas using steam as gasification agent, the volume percentage of H2 in the product gas increased with the increase of reaction temperature, the content of H2 was up to 68.83%, and that of H2+CO reached 81.36%, and the low heating value is 9.18 MJ·Nm-3. With CO2 as the gasification agent, the main component in the product gas is CO. The higher the temperature, the lager the CO content. It was up to 53.84%, and the low heating value of the product gas is 7.25 MJ·Nm-3 at temperature of 1 000℃.
-
Key words:
- municipal sludge /
- pyrolysis /
- steam gasification /
- CO2 gasification
-
-
[1] 王菲, 杨国录, 刘林双,等. 城市污泥资源化利用现状及发展探讨[J]. 南水北调与水利科技,2013,11(2):99-103 [2] YOSHIDA H, CHRISTENSEN T H, GUILDAL T, et al. A comprehensive substance flow analysis of a municipal wastewater and sludge treatment plant[J]. Chemosphere, 2015, 138:874-882 [3] 甘义群. 城市污泥热解特性及资源化利用新方法试验研究[D].武汉:中国地质大学,2005 [4] 陈萌, 韩大伟, 吉芳英,等. 城市污水处理厂污泥热值及影响因素分析[J]. 给水排水,2008,31(4):37-40 [5] JIN B, LI B. Comprehensive utilization of sewage sludge in municipal wastewater treatment plant[J]. Environmental Science and Management, 2010, 35(5):106-109 [6] 胡佳佳, 白向玉, 刘汉湖,等. 国内外城市剩余污泥处置与利用现状[J]. 徐州工程学院学报(自然科学版), 2009, 24(2):45-49 [7] 卢欢亮, 叶向东, 汪永红, 等. 热解温度对污泥生物炭的表面特性及重金属安全性的影响[J]. 环境工程学报, 2015,9(3):1433-1439 [8] XU W Y, WU D. Comprehensive utilization of the pyrolysis products from sewage sludge.[J]. Environmental Technology, 2015, 36(14):1731-1744 [9] 诸黄清,余国涛,冯昱恒,等.污泥复合热解制取较高热值燃气的研究[J].煤气与热力,2015,35(10):15-20 [10] ONGEN A, OZCAN H K, OZBAS E E. Gasification of biomass and treatment sludge in afixed bed gasifier[J]. International Journal of Hydrogen Energy, 2015, 41(19):8146-8153 [11] 张艳丽,肖波,胡智泉,等.污泥热解残渣水蒸气气化制取富氢燃气[J].可再生能源,2012,30(1):67-71 [12] 刘秀如,吕清刚,赵科.城市污水污泥热解特性及动力学研究[J].热能动力工程,2010,25(6):677-680 [13] 杨明沁,解立平,岳俊楠等. 污水污泥气化焦油热解特性的研究[J]. 化工进展,2015,34(5):1472-1477 [14] 屈阳, 张进锋, 朱卫兵, 等. 城市生活垃圾机械生物处理效果[J]. 环境工程学报, 2015,9(1):401-406 [15] JARAMILLO-ARANGO A, FONTS I, CHEJNE F, et al. Product compositions from sewage sludge pyrolysis in a fluidized bed and correlations with temperature[J]. Journal of Analytical & Applied Pyrolysis, 2016, 121:287-296 [16] MOON J, MUN T Y, YANG W, et al. Effects of hydrothermal treatment of sewage sludge on pyrolysis and steam gasification[J]. Energy Conversion and Management, 2015, 103:401-407 [17] LEE J, TSANG Y F, KIM S, et al. Energy density enhancement via, pyrolysis of paper mill sludge using CO2[J]. Journal of CO2 Utilization, 2017, 17:305-311 -

计量
- 文章访问数: 2739
- HTML全文浏览数: 2407
- PDF下载数: 277
- 施引文献: 0