表面微孔非织造布材料的制备、表征及其对挥发性有机物(VOCs)的吸附性能

张环, 刘玉红, 吴晓青, 王蒙, 候媛. 表面微孔非织造布材料的制备、表征及其对挥发性有机物(VOCs)的吸附性能[J]. 环境工程学报, 2017, 11(10): 5543-5548. doi: 10.12030/j.cjee.201612231
引用本文: 张环, 刘玉红, 吴晓青, 王蒙, 候媛. 表面微孔非织造布材料的制备、表征及其对挥发性有机物(VOCs)的吸附性能[J]. 环境工程学报, 2017, 11(10): 5543-5548. doi: 10.12030/j.cjee.201612231
ZHANG Huan, LIU Yuhong, WU Xiaoqing, WANG Meng, HOU Yuan. Polypropylene nonwoven with microporous on surface:Preparation, characterization and adsorption for VOCs[J]. Chinese Journal of Environmental Engineering, 2017, 11(10): 5543-5548. doi: 10.12030/j.cjee.201612231
Citation: ZHANG Huan, LIU Yuhong, WU Xiaoqing, WANG Meng, HOU Yuan. Polypropylene nonwoven with microporous on surface:Preparation, characterization and adsorption for VOCs[J]. Chinese Journal of Environmental Engineering, 2017, 11(10): 5543-5548. doi: 10.12030/j.cjee.201612231

表面微孔非织造布材料的制备、表征及其对挥发性有机物(VOCs)的吸附性能

  • 基金项目:

    国家自然科学基金资助项目(51678409)

    天津市科技支撑计划项目(15ZCZDSF00880)

    天津市科技计划项目(15PTSYJC00240)

  • 中图分类号: X701.7

Polypropylene nonwoven with microporous on surface:Preparation, characterization and adsorption for VOCs

  • Fund Project:
  • 摘要: 以聚丙烯(PP)非织造布为基材,制备苯乙烯(ST)和二乙烯苯(DVB)接枝的无纺布材料PP-ST-DVB,再通过交联反应使得非织造布表面的接枝层形成微孔结构,制备对VOCs具有吸附性能的非织造布(HCN)材料。采用扫描电子显微镜(SEM)、傅里叶变换红外光谱仪(FT-IR)、静态氮吸附仪(BET)对非织造布表面形貌进行了表征。重点研究了HCN的结构对挥发性有机物(VOCs)(苯乙烯、丙酮和正己烷)吸附性能影响规律;探讨了无纺布表面基团与VOCs的化学作用力对吸附性能的影响。结果表明,当ST和DVB接枝率135%左右时,HCN的比表面积可达到351.8 m2·g-1,对VOCs吸附性能显著提高,苯乙烯的最大吸附量可达到353.6 mg·g-1,材料对3种气体的吸附能力为苯乙烯 > 正己烷 > 丙酮。
  • 加载中
  • [1] 李长英, 陈明功, 盛楠,等. 挥发性有机物处理技术的特点与发展[J]. 化工进展, 2016, 35(3):29-37
    [2] WANG H, WANG T, HAN L, et al. VOC adsorption and desorption behavior of hydrophobic, functionalized SBA-15[J]. Journal of Materials Research, 2016, 31(4):1-10
    [3] DUAN E, HAN J, SONG Y, et al. Adsorption of styrene on the hydrothermal-modified sepiolite[J]. Materials Letters, 2013, 111(45):150-153
    [4] WANG G, ZHANG Z, WANG J, et al. Study of the Influence of Pore Width on the Disposal of Benzene Employing Tunable OMCs[J]. Industrial & Engineering Chemistry Research, 2015, 54(3):1074-1080
    [5] WANG J, WANG G, WANG W, et al. Hydrophobic conjugated microporous polymer as a novel adsorbent for removal of volatile organic compounds[J]. Journal of Materials Chemistry A, 2014, 2(34):14028-14037
    [6] BAUR G B, BESWICK O, SPRING J, et al. Activated carbon fibers for efficient VOC removal from diluted streams:the role of surface functionalities[J]. Adsorption, 2015, 21(4):255-264
    [7] BAUR G B, YURANOY I, KIWI-MINSKER L. Activated carbon fibers modified by metal oxide as effective structured adsorbents for acetaldehyde[J]. Catalysis Today, 2015, 249:252-258
    [8] BAUR G B, BESWICK O, SPRING J, et al. Activated carbon fibers for efficient VOC removal from diluted streams:the role of surface functionalities[J]. Adsorption, 2015, 21(4):255-264
    [9] OZTURK B, YILMAZ D. Absorptive removal of volatile organic compounds from flue gas streams[J]. Process Safety & Environmental Protection, 2006, 84(5):391-398
    [10] QI M, WU X, ZHANG F, et al. Paraffin oil emulsions for the absorption of toluene gas[J]. Chemical Engineering & Technology, 2016, 39(8):1438-1444
    [11] CHIAROTTO I, FEROCI M, ORSINI M, et al. Study on the reactivity of aldehydes in electrolyzed ionic liquids:Benzoin condensation-volatile organic compounds (VOCs) vs. room temperature ionic liquids (RTILs)[J]. Advanced Synthesis & Catalysis, 2010, 352(18):3287-3292
    [12] ALTALYAN H N, JONES B, BRADD J, et al. Removal of volatile organic compounds (VOCs) from groundwater by reverse osmosis and nanofiltration[J]. Journal of Water Process Engineering, 2016, 9:9-21
    [13] KUIAWA J, CERNEAUX S, KUJAWSKI W. Highly hydrophobic ceramic membranes applied to the removal of volatile organic compounds in pervaporation[J]. Chemical Engineering Journal, 2015, 260:43-54
    [14] ZHOU L, ZHAO M, BINDLER F, et al. Identification of Oxidation Compounds of 1-stearoyl-2-linoleoyl-sn-glycero-3-phosphoethanolamine During Thermal Oxidation.[J]. Journal of Agricultural & Food Chemistry, 2015, 63(43):9615-20
    [15] HUANG H, XU Y, FENG Q, et al. Low temperature catalytic oxidation of volatile organic compounds:A review[J]. Catalysis Science & Technology, 2015, 5(5):2649-2669
    [16] LI Y, FAN Z, SHI J, et al. Removal of volatile organic compounds (VOCs) at room temperature using dielectric barrier discharge and plasma-catalysis[J]. Plasma Chemistry and Plasma Processing, 2014, 34(4):801-810
    [17] WANG G, DOU B, ZHANG Z, et al. Adsorption of benzene, cyclohexane and hexane on ordered mesoporous carbon[J]. Journal of Environmental Sciences, 2015, 30(4):65-73
    [18] WANG H, ZHU T, FAN X, et al. Adsorption and desorption of small molecule volatile organic compounds over carbide-derived carbon[J]. Carbon, 2014, 67(1):712-720
    [19] AMID H, MAZE B, FLICKINGER M C, et al. Hybrid adsorbent nonwoven structures:A review of current technologies[J]. Journal of Materials Science, 2016, 51(9):4173-4200
    [20] DU Xiao, WEI J, LIU Wei, et al. Polypropylene nonwoven surface modified through introducing porous microspheres:Preparation, characterization and adsorption[J]. Applied Surface Science, 2015, 360:525-533
    [21] WANG H, TANG M, ZHANG K, et al. Functionalized hollow siliceous spheres for VOCs removal with high efficiency and stability[J]. Journal of Hazardous Materials, 2014, 268(268):115-23
    [22] WANG W Q, WANG J, CHEN J G, et al. Synthesis of novel hyper-cross-linked polymers as adsorbent for removing organic pollutants from humid streams[J]. Chemical Engineering Journal, 2015, 281:34-41
    [23] VINODH R, JUNG E M, GANESH M, et al. Novel microporous hypercross-linked polymers as sorbent for volatile organic compounds and CO2, adsorption[J]. Journal of Industrial & Engineering Chemistry, 2015, 21(1):1231-1238
    [24] WANG W Q, WANG J, CHEN J G, et al. Synthesis of novel hyper-cross-linked polymers as adsorbent for removing organic pollutants from humid streams[J]. Chemical Engineering Journal, 2015, 281:34-41
    [25] WU J, ZHANGL, LONG C, et al. Adsorption characteristics of Pentane, Hexane, and Heptane:Comparison of hydrophobic hypercrosslinked polymeric adsorbent with activated carbon[J]. Journal of Chemical & Engineering Data, 2017, 57(57):3426-3433
    [26] HU Q, LI J J, HAO Z P, et al. Dynamic adsorption of volatile organic compounds on organofunctionalized SBA-15 materials[J]. Chemical Engineering Journal, 2009, 149(1/2/3):281-288
    [27] HAN J K, PANT H R, CHOI N J, et al. Composite electrospun fly ash/polyurethane fibers for absorption of volatile organic compounds from air[J]. Chemical Engineering Journal, 2013, 230(16):244-250
  • 加载中
计量
  • 文章访问数:  2110
  • HTML全文浏览数:  1722
  • PDF下载数:  448
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-04-19
  • 刊出日期:  2017-10-12
张环, 刘玉红, 吴晓青, 王蒙, 候媛. 表面微孔非织造布材料的制备、表征及其对挥发性有机物(VOCs)的吸附性能[J]. 环境工程学报, 2017, 11(10): 5543-5548. doi: 10.12030/j.cjee.201612231
引用本文: 张环, 刘玉红, 吴晓青, 王蒙, 候媛. 表面微孔非织造布材料的制备、表征及其对挥发性有机物(VOCs)的吸附性能[J]. 环境工程学报, 2017, 11(10): 5543-5548. doi: 10.12030/j.cjee.201612231
ZHANG Huan, LIU Yuhong, WU Xiaoqing, WANG Meng, HOU Yuan. Polypropylene nonwoven with microporous on surface:Preparation, characterization and adsorption for VOCs[J]. Chinese Journal of Environmental Engineering, 2017, 11(10): 5543-5548. doi: 10.12030/j.cjee.201612231
Citation: ZHANG Huan, LIU Yuhong, WU Xiaoqing, WANG Meng, HOU Yuan. Polypropylene nonwoven with microporous on surface:Preparation, characterization and adsorption for VOCs[J]. Chinese Journal of Environmental Engineering, 2017, 11(10): 5543-5548. doi: 10.12030/j.cjee.201612231

表面微孔非织造布材料的制备、表征及其对挥发性有机物(VOCs)的吸附性能

  • 1.  省部共建分离膜与膜过程国家重点实验室, 天津 300387
  • 2.  天津工业大学环境与化学工程学院, 天津 300387
  • 3.  天津市水质安全评价与保障技术工程中心, 天津 300387
  • 4.  天津工业大学纺织学院, 天津 300387
基金项目:

国家自然科学基金资助项目(51678409)

天津市科技支撑计划项目(15ZCZDSF00880)

天津市科技计划项目(15PTSYJC00240)

摘要: 以聚丙烯(PP)非织造布为基材,制备苯乙烯(ST)和二乙烯苯(DVB)接枝的无纺布材料PP-ST-DVB,再通过交联反应使得非织造布表面的接枝层形成微孔结构,制备对VOCs具有吸附性能的非织造布(HCN)材料。采用扫描电子显微镜(SEM)、傅里叶变换红外光谱仪(FT-IR)、静态氮吸附仪(BET)对非织造布表面形貌进行了表征。重点研究了HCN的结构对挥发性有机物(VOCs)(苯乙烯、丙酮和正己烷)吸附性能影响规律;探讨了无纺布表面基团与VOCs的化学作用力对吸附性能的影响。结果表明,当ST和DVB接枝率135%左右时,HCN的比表面积可达到351.8 m2·g-1,对VOCs吸附性能显著提高,苯乙烯的最大吸附量可达到353.6 mg·g-1,材料对3种气体的吸附能力为苯乙烯 > 正己烷 > 丙酮。

English Abstract

参考文献 (27)

返回顶部

目录

/

返回文章
返回