[1]
|
李延, 胡双庆, 尹大强,等. 11种取代酚类内分泌干扰活性的初步筛选与评价. 环境化学, 2003, 22(4):385-389 LI Yan, HU Shuangqing, YIN Daqiang, et al. Primary screening and evaluation of endocrine disrupting activities of eleven substituted phenols. Environmental Chemistry, 2003, 22(4):385-389(in Chinese)
|
[2]
|
RENE V., WATSON S. Bisphenol S disrupts estradiol-induced nongenomic signaling in a rat pituitary cell line: Effects on cell functions. Environmental Health Perspectives, 2013, 121(3):352-358
|
[3]
|
SORIA E., TIPHANY G., DELPHINE M., et al. A new chapter in the bisphenol A story: Bisphenol S and bisphenol F are not safe alternatives to this compound. Fertility & Sterility, 2015, 103(1):11-21
|
[4]
|
QIU W., ZHAO Y., YANG M., et al. Actions of bisphenol A and bisphenol S on the reproductive neuroendocrine system during early development in zebrafish. Endocrinology, 2015, 157(2):636-647
|
[5]
|
LIAO C., LIU F., KANNAN K. Bisphenol S, a new bisphenol analogue, in paper products and currency bills and its association with bisphenol A residues. Environmental Science & Technology, 2012, 46(12):6515-22
|
[6]
|
YANG Y., LU L., JING Z., et al. Simultaneous determination of seven bisphenols in environmental water and solid samples by liquid chromatography-electrospray tandem mass spectrometry. Journal of Chromatography A, 2014, 1328(3):26-34
|
[7]
|
LEE S., LIAO C., SONG G J., et al. Emission of bisphenol analogues including bisphenol A and bisphenol F from wastewater treatment plants in Korea. Chemosphere, 2014, 119(119C):1000-1006
|
[8]
|
张杰, 钱新明, 赵鹏,等. 纳米材料毒理学和安全性研究进展. 中国安全生产科学技术, 2013, 9(1):17-23 ZHANG Jie, QIAN Xinming, ZHAO Peng, et al. Progress on toxicology and safety research of nanomaterials. Journal of Safety Science and Technology, 2013, 9(1):17-23(in Chinese)
|
[9]
|
李卫华, 市原学, 李洁斐,等. 纳米材料的毒理学和安全性. 环境与职业医学, 2006, 23(5):430-434 LI Weihua, ICHIHARA Gaku, LI Jiefei, et al. Toxicity and safety of nano-materials. Journal of Environmental & Occupational Medicine, 2006, 23(5):430-434(in Chinese)
|
[10]
|
HE Q., ZHANG Z., XIONG J., et al. A novel biomaterial-Fe3O4:TiO2 core-shell nano particle with magnetic performance and high visible light photocatalytic activity. Optical Materials, 2008, 31(2):380-384
|
[11]
|
LIU X., FANG Z., ZHANG X., et al. Preparation and characterization of Fe3O4/CdS nanocomposites and their use as recyclable photocatalysts. Crystal Growth & Design, 2009, 9(1):197-202
|
[12]
|
SHARMA I. D., TRIPATHI G. K., SHARMA V. K., et al. One-pot synthesis of three bismuth oxyhalides (BiOCl, BiOBr, BiOI) and their photocatalytic properties in three different exposure conditions. Cogent Chemistry, 2015, 1(1):1-15
|
[13]
|
魏平玉, 杨青林, 郭林. 卤氧化铋化合物光催化剂. 化学进展, 2009,21(9):1734-1741 WEI Pingyu, YANG Qinglin, GUO Lin. Bismuth oxyhalide compounds as photocatalysts. Progress in Chemistry, 2009,21(9):1734-1741(in Chinese)
|
[14]
|
HE R., CAO S., ZHOU P., et al. Recent advances in visible light Bi-based photocatalysts. Chinese Journal of Catalysis, 2014, 35(7):989-1007
|
[15]
|
JIANG Z., YANG F., YANG G., et al. The hydrothermal synthesis of BiOBr flakes for visible-light-responsive photocatalytic degradation of methyl orange. Journal of Photochemistry & Photobiology A Chemistry, 2010, 212(1):8-13
|
[16]
|
SHANG M., WANG W., ZHANG L. Preparation of BiOBr lamellar structure with high photocatalytic activity by CTAB as Br source and template. Journal of Hazardous Materials, 2009, 167(1/2/3):803-809
|
[17]
|
GUO C., XU J., WANG S., et al. Photodegradation of sulfamethazine in an aqueous solution by a bismuth molybdate photocatalyst. Catalysis Science & Technology, 2013, 3(6):1603-1611
|
[18]
|
ZHANG T., LI W., CROUE J. P. A non-acid-assisted and non-hydroxyl-radical-related catalytic ozonation with ceria supported copper oxide in efficient oxalate degradation in water. Applied Catalysis B Environmental, 2012, s 121-122(25):88-94
|
[19]
|
方建章, 徐晓鑫, 柳章,等. BiOI-TiO2复合材料光催化降解双酚A的研究. 华南师范大学学报:自然科学版, 2013, 45(1):68-72 FANG Jianzhang, XU Xiaoxin, LIU Zhang, et al. Study on nano bismuth oxyiodide-titanium dioxide composite particles and photodegradation of bisphenol A under visible light irradiation. Journal of South China Normal University: Natural Science Edition, 2013, 45(1):68-72(in Chinese)
|
[20]
|
CHEN M., CHU W. Degradation of antibiotic norfloxacin in aqueous solution by visible-light-mediated C-TiO2 photocatalysis. Journal of Hazardous Materials, 2012, s 219-220(12):183-189
|
[21]
|
SHARMA J., MISHRA I. M., DIONYSIOU D. D., et al. Oxidative removal of Bisphenol A by UV-C/peroxymonosulfate (PMS): Kinetics, influence of co-existing chemicals and degradation pathway. Chemical Engineering Journal, 2015, 276:193-204
|
[22]
|
GUO C., GE M., LIU L., et al. Directed synthesis of mesoporous TiO2 microspheres: catalysts and their photocatalysis for bisphenol A degradation. Environmental Science & Technology, 2010, 44(1):419-425
|
[23]
|
CHANG C., ZHU L., YU F., et al. Highly active Bi/BiOI composite synthesized by one-step reaction and its capacity to degrade bisphenol A under simulated solar light irradiation. Chemical Engineering Journal, 2013, 233(11):305-314
|
[24]
|
XU J., HAO Z., GUO C., et al. Photodegradation of sulfapyridine under simulated sunlight irradiation: Kinetics, mechanism and toxicity evolvement. Chemosphere, 2014, 99(3):186-191
|
[25]
|
GUO C., XU J., WANG S., et al. Photodegradation of sulfamethazine in an aqueous solution by a bismuth molybdate photocatalyst. Catalysis Science & Technology, 2013, 3(6):1603-1611
|