基于集成神经网络的汽车尾气检测系统设计

刘萍, 简家文, 陈志芸. 基于集成神经网络的汽车尾气检测系统设计[J]. 环境工程学报, 2016, 10(4): 1883-1887. doi: 10.12030/j.cjee.20160448
引用本文: 刘萍, 简家文, 陈志芸. 基于集成神经网络的汽车尾气检测系统设计[J]. 环境工程学报, 2016, 10(4): 1883-1887. doi: 10.12030/j.cjee.20160448
Liu Ping, Jian Jiawen, Chen Zhiyun. Design of detection system for automobile exhaust based on integrated neural network[J]. Chinese Journal of Environmental Engineering, 2016, 10(4): 1883-1887. doi: 10.12030/j.cjee.20160448
Citation: Liu Ping, Jian Jiawen, Chen Zhiyun. Design of detection system for automobile exhaust based on integrated neural network[J]. Chinese Journal of Environmental Engineering, 2016, 10(4): 1883-1887. doi: 10.12030/j.cjee.20160448

基于集成神经网络的汽车尾气检测系统设计

  • 基金项目:

    国家自然科学基金资助项目(61471210)

    浙江省宁波市科技局自然科学基金资助项目(2013A610002)

  • 中图分类号: X701

Design of detection system for automobile exhaust based on integrated neural network

  • Fund Project:
  • 摘要: 为了准确、有效地检测汽车尾气中各气体的质量分数,对传感器阵列和BP神经网络技术进行了研究,设计了一套汽车尾气检测系统。首先,根据汽车尾气成分选取4个相应传感器和一个温湿度传感器组成传感器阵列,搭建汽车尾气检测装置;其次,为了克服单一BP神经网络预测精度低,容易陷入局部极值的缺点,建立基于Adaboost算法和BP神经网络的集成神经网络模型;最后,利用集成神经网络模型对传感器阵列的响应信号进行回归分析。结果表明,集成神经网络模型预测的平均相对误差小于3%,能够有效处理汽车尾气的检测数据。
  • 加载中
  • [1] 苏会波,林海龙,李凡,等.乙醇汽油对减少机动车污染排放的机理研究与分析.环境工程学报,2015,9(2):823-829 Su Huibo,Lin Hailong,Li Fan,et al.Mechanism study and analysis on emission reduction of pollutants with ethanol gasoline.Chinese Journal of Environmental Engineering,2015,9(2):823-829(in chinese)
    [2] 荆旭,胡方明,任爱锋.汽车尾气分析仪设计.电子科技,2014,27(2):106-108 Jing Xu,Hu Fangming,Ren Aifeng.Design of an automotive exhaust gas analyzer.Electronic Science and Technology,2014,27(2):106-108(in Chinese)
    [3] 张坤.交通排放在线检测的红外传感器研究.合肥:中国科学技术大学硕士学位论文,2015 Zhang Kun.A non-dispersive infrared sensor for the measurement of vehicle exhaust.Hefei:Masten Dissertation of University of Science and Technology of China,2015(in Chinese)
    [4] 方杨.基于国 Ⅲ 标准的汽车尾气检测分析系统.杭州:浙江大学硕士学位论文,2008 Fang Yang.Automotive exhaust detection and analysis system based on national Ⅲ standard.Hangzhou:Master Dissertation of Zhejiang University,2008(in Chinese)
    [5] Pati S.,Maity A.,Banerji P.,et al.Qualitative and quantitative differentiation of gases using ZnO thin film gas sensors and pattern recognition analysis.Analyst,2014,139(7):1796-1800
    [6] Zhang L.,Tian F.,Liu S.,et al.Chaos based neural network optimization for concentration estimation of indoor air contaminants by an electronic nose.Sensors and Actuators A:Physical,2013,189:161-167
    [7] 张覃轶.电子鼻:传感器阵列,系统及应用研究.武汉:华中科技大学博士学位论文,2005 Zhang Qinyi.Electronic nose:Studies on gas sensor arrays,systems and its applications.Wuhan:Doctoral Dissertation of Huazhong University of Science and Technology,2005(in chinese)
    [8] 林海军,滕召胜,杨进宝,等.基于 RBF 神经网络集成-模糊加权输出的数字温度传感器误差补偿.仪器仪表学报,2011,32(7):1675-1680 Lin Haijun,Teng Zhaosheng,Yang Jinbao,et al.Error compensation for digital temperature sensor based on RBF neural network ensembles-fuzzy weighing output.Chinese Journal of Scientific Instrument,2011,32(7):1675-1680(in Chinese)
    [9] Gao L.,Hu S.,Li Z.A face recognition method based on a combination of integrated neural network and KICA algorithm//Systems and Informatics (ICSAI),2012 International Conference on.IEEE,2012:2108-2112
    [10] 耿志广,王希武,王寅龙,等.基于人工神经网络的电子鼻对混合气体检测研究.现代计算机月刊,2010(5):45-48 Geng Zhiguang,Wang Xiwu,Wang Yinlong,et al.Research on detection of mixed gas by electronic nose based on artificial neural network.Modern Computer,2010(5):45-48(in Chinese)
    [11] 姚毓升,解永平,文涛.三电极电化学传感器的恒电位仪设计.仪表技术与传感器,2009(9):23-25 Yao Yusheng,Xie Yongping,Wen Tao.Design of potentiostat for three-electrode electrochemical sensors.Instrument Technioue and Sensor,2009(9):23-25(in Chinese)
    [12] 张伟,周凤星.基于 STM32 和 FPGA 的石油管道腐蚀测试仪.仪表技术与传感器,2015(2):39-42 Zhang Wei,Zhou Fengxing.Design of pipeline corrosion monitor instrument based on STM32 and FPGA.Instrument Technique and Sensor,2015(2):39-42(in Chinese)
    [13] 李翔,朱全银.Adaboost 算法改进BP神经网络预测研究.计算机工程与科学,2013,35(8):96-102 Li Xiang,Zhu Quanyin.Adaboost prediction of improved BP neural network by Adaboost algorithm.Computer Engineering and Science,2013,35(8):96-102(in Chinese)
    [14] 张文阳,张良均,李娜,等.多元回归和BP人工神经网络在预测混合厌氧消化产气量过程中的应用比较.环境工程学报,2013,7(2):747-752 Zhang Wenyang,Zhang Liangjun,Li Na,et al.Comparing multiple regression and BP artificial nerve net model used on prediction of anaerobic co-digestion gas-producing process.Chinese Journal of Environmental Engineering,2013,7(2):747-752(in chinese)
    [15] Yu F.,Xu X.A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network.Applied Energy,2014,134:102-113
    [16] Manohar V.,Povey D.,Khudanpur S.Semi-supervised maximum mutual information training of deep neural network acoustic models//Proceedings of Interspeech,2015
    [17] Zhang M.H.,Xu Q.S.,Daeyaert F.,et al.Application of boosting to classification problems in chemometrics.Analytica Chimica Acta,2005,544(1):167-176
    [18] Heo J.,Yang J.Y.AdaBoost based bankruptcy forecasting of Korean construction companies.Applied Soft Computing,2014,24:494-499
  • 加载中
计量
  • 文章访问数:  2488
  • HTML全文浏览数:  1966
  • PDF下载数:  763
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-12-06
  • 刊出日期:  2016-04-15
刘萍, 简家文, 陈志芸. 基于集成神经网络的汽车尾气检测系统设计[J]. 环境工程学报, 2016, 10(4): 1883-1887. doi: 10.12030/j.cjee.20160448
引用本文: 刘萍, 简家文, 陈志芸. 基于集成神经网络的汽车尾气检测系统设计[J]. 环境工程学报, 2016, 10(4): 1883-1887. doi: 10.12030/j.cjee.20160448
Liu Ping, Jian Jiawen, Chen Zhiyun. Design of detection system for automobile exhaust based on integrated neural network[J]. Chinese Journal of Environmental Engineering, 2016, 10(4): 1883-1887. doi: 10.12030/j.cjee.20160448
Citation: Liu Ping, Jian Jiawen, Chen Zhiyun. Design of detection system for automobile exhaust based on integrated neural network[J]. Chinese Journal of Environmental Engineering, 2016, 10(4): 1883-1887. doi: 10.12030/j.cjee.20160448

基于集成神经网络的汽车尾气检测系统设计

  • 1. 宁波大学信息科学与工程学院, 宁波 315211
基金项目:

国家自然科学基金资助项目(61471210)

浙江省宁波市科技局自然科学基金资助项目(2013A610002)

摘要: 为了准确、有效地检测汽车尾气中各气体的质量分数,对传感器阵列和BP神经网络技术进行了研究,设计了一套汽车尾气检测系统。首先,根据汽车尾气成分选取4个相应传感器和一个温湿度传感器组成传感器阵列,搭建汽车尾气检测装置;其次,为了克服单一BP神经网络预测精度低,容易陷入局部极值的缺点,建立基于Adaboost算法和BP神经网络的集成神经网络模型;最后,利用集成神经网络模型对传感器阵列的响应信号进行回归分析。结果表明,集成神经网络模型预测的平均相对误差小于3%,能够有效处理汽车尾气的检测数据。

English Abstract

参考文献 (18)

返回顶部

目录

/

返回文章
返回